최근 들어 기술개발 현황, 신규기술 분야 출현, 기술융합과 학제 공동연구, 기술의 트렌드 변화 등을 파악하기 위해 R&D 과제정보, 특허와 같은 기술문서의 분류정보가 많이 활용되고 있다. 이러한 기술문서를 분류하기 위해 주로 텍스트마이닝 기법들이 활용되어 왔다. 그러나 기존 텍스트마이닝 방법들로 기술문서를 분류하기 위해서는 기술문서들을 대표하는 특징들을 직접 추출해야 하는 한계점이 있다. 따라서 본 연구에서는 딥러닝 기반의 BERT모델을 활용하여 기술문서들로부터 자동적으로 문서 특징들을 추출한 후, 이를 문서 분류에 직접 활용하는 모델을 제안하고, 이에 대한 성능을 검증하고자 한다. 이를 위해 텍스트 기반의 국가 R&D 과제 정보를 활용하여 BERT 기반 국가 R&D 과제의 중분류코드 예측 모델을 생성하고 이에 대한 성능을 평가한다.
대학 정보통신창업지원센터(이하 센터)에서 지원된 서비스와 입주기업의 성과 간에 종합적인 관계분석은 센터 제공 서비스의 성공요인 도출 및 향후 유사한 사업의 서비스 계획 수립에 매우 중요하다 본 연구는 센터 입주기업의 성과에 영향을 미칠 것으로 예상되는 제반 요인들을 추출하고, 검증하고자 구조방정식 모형을 이용하였고, 정책적 함의를 도출하였다. 그 결과 첫째, 수혜기업의 제공 서비스 활용도가 높을수록 센터에 대한 만족도는 높아지나, 서비스의 질적수준이 센터 만족도에 직접적인 영향을 주지 못하고, 둘째, 센터에 대한 만족도가 높을수록 입주기업의 기술력은 높아지고, 경영개선에는 직접적인 영향을 미치지는 못하지만, 특허, 지재권 둥 기술적 성과의 증가에 긍정적인 영향을 미치고, 셋째, 기업의 경영개선은 매출액 증가에 긍정적인 영향을 미치나, 기술력 변화 자체는 매출액 증가에 직접적인 영향을 미치지 못하는 것으로 나타났다. 아울러 입주기업의 센터 만족도도 기업의 매출액 증가에 직접적인 영향을 미치지 못하는 것으로 나타났다.
Journal of Information Technology Applications and Management
/
제21권4호
/
pp.65-96
/
2014
To have global competitiveness in newly growing industry, good quality R&D's in convergence technology arerequired. Korean government also started to emphasize the importance of convergence technology as a new engine of growth for the future development. Since 2008, worldwide energy crisis and concerns on low carbon green growth made people focus on the convergence between information technology (IT) and energy technology (ET). However, the R&D performance comparison among the convergence technologies is not well explored so far. Therefore, this study uses Korea's patent citation database to measure the R&D performance of convergence technologies. We adopt technology development cycle, technology spillover analysis, and technology diffusion analysis to see the knowledge flow from R&D industry to others. We find that IT_ET convergence technology generally shows higher R&D performance than other convergence technologies. Contrary to public belief, convergence R&D by big companies has relatively low performance especially measures in technology spillover and technology diffusion. This implies that they might concentrate on delicate Fuel Cell Energy/Environment Technology (FEIT) or Nano Environment/Energy Information Technology (NEIT) rather than general energy information technologies. We also find that Korea's chemical industry may play a crucial role for the growth of other convergence technologies.
최근 미·중 기술 갈등이 심화되고 있다. 국가 보안을 이유로 시작된 미·중 갈등은 본원적으로는 중국 IT 제조 및 기술 기업들의 약진을 경계하는 미국 정부차원의 견제로 해석된다. 중국의 IT부문은 빠른 성장을 거듭하며 미국에 위협적인 존재가 되어 왔다. R&D지출, 특허, 논문 등 다양한 지표에서 중국은 빠른 성장을 지속해 왔고 특히 5G, AI (인공지능) 등 차세대 기술에 있어 중국은 미국에 큰 위협이 되고 있다. 그리고 그 중심에 화웨이가 있다. 2018년 화웨이는 세계 최대의 통신장비 제조사이자 미국의 혁신 기업인 애플을 제치고 세계 2위의 스마트폰 제조사가 되었고 최근에는 AI칩셋 제조, 빅데이터 분석, 클라우드 등에서 빠른 성장을 보이며 4차 산업혁명의 핵심 산업 전반에 있어 그 영향력을 강화하고 있는 미·중 갈등의 중심에 있는 기업이다. 본 연구는 화웨이 이슈를 중심으로 우리나라 중소기업에 대한 파급효과를 분석하는데 목적이 있다. 이를 위해 화웨이와의 국내 기업 거래 현황, 글로벌 밸류체인 관점에서의 화웨이의 협력관계, 우리나라의 화웨이 정보보안 이슈 및 정부의 정책적 대응이라는 세 가지 분석체계를 바탕으로 우리나라 제조 경쟁력 및 정보보안 역량 강화 등의 정책 제언을 제시하고자 한다.
AI 기술은 법률, 특허, 금융, 국방의 의사결정지원 기술 형태로 발전하여 질병 진단과 법률 판정 등에 적용되고 있다. Deep Learning으로 실시간 정보를 검색하려면, Big data Analysis과 Deep Learning Algorithm이 필요하다. 본 논문에서는 Deep Learning 모델인 RNN(Recurrent Neural Network)을 이용하여 상위권 대학 진학률을 예측하고자 한다. 우선, 행정구역 사설학원 현황과 행정구역 연령별 학생 수를 분석하고 교육열이 높은 지역에 거주하는 학생이 상위권 대학 진학률이 높다는 사회 통념의 가설을 설정했다. 예측된 가설과 정부의 공공데이터를 활용하여 분석된 자료를 토대로 검증하고자 한다. 예측모델은 2015년부터 2017년까지의 데이터를 활용하여 상위권 진학률을 예상하도록 학습하고, 학습된 모델은 2018년 상위권 진학률을 예측한다. 교육특구지역의 상위권 진학률을 Deep Learning 모델인 RNN을 이용하여 예측 실험을 수행했다. 본 논문은 교육열이 높은 지역의 사설학원 현황, 연령별 학생 수에 미치는 영향에 대해서 가구소득, 사교육의 참여 비율을 분석하여 상위권 진학률의 상관관계를 정의한다.
2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.
본 연구에서는 기술문서의 인용 정보를 기반으로 직접인용과 간접인용을 고려하여 핵심 문서를 선별하였고 선별된 문서 간의 인용네트워크 트리(citation network tree)를 생성하여 기술진화 경로를 추출하고자 하였다. 활용 예시로 OLED(유기발광다이오드) 분야 특허데이터를 분석하여 핵심문서를 선별한 후 문서간 인용관계 트리 계보도를 생성하였고, 그 중 OLED 원천기술이 어떤 기술진화 경로를 통해 반도체 관련 기술로 전이되었는지 분석하였다. 다른 한편으로 그래핀(graphene) 분야 논문의 인용관계 트리 분석을 통하여 간접인용을 고려한 가중치 계산방법이 직접인용만을 고려한 피인용 회수 계산법보다 현실을 더 잘 반영함을 고찰하였다.
특허(patent), 학술 논문(scholarly paper)과 연구 보고서(research report)와 같은 디지털 문서(digital document)에는 주제(topic)를 요약하는 저자 키워드(author keyword)가 있다. 서로 다른 문서가 동일한 키워드를 공유하고 있다면 두 문서가 동일한 주제의 내용을 기술하고 있을 가능성이 매우 높다. 문서 군집화(document clustering)는 비슷한 주제를 가지는 문서들을 비지도 학습 방법(unsupervised learning)을 이용하여 같은 군집으로 그룹(group)화 하는 것이다. 문서 군집화는 다양한 분석에 이용되지만 대용량의 문서 데이터에 적용하기 위해서는 많은 계산량이 필요함으로 쉽지 않다. 이러한 경우, 문서의 내용을 이용하는 것보다 문서의 키워드를 이용하여 군집화하면 더욱 효율적으로 대용량의 데이터를 연결할 수 있다. 기존의 상향식 군집화 방법(bottom-up hierarchical clustering)은 대용량의 키워드 군집화(keyword clustering)를 수행하는데 있어서 많은 시간이 필요하다는 문제점이 있다. 본 논문에서는 정보검색(information retrieval)에서 널리 사용되는 역인덱스(inverted-index) 구조를 상향식 군집화에 적용한 효율적인 군집화 방법을 제안하고, 제안 방법을 대용량의 키워드 데이터에 적용하였으며, 그 결과를 분석하였다.
기술은 산업발전과 밀접한 관련이 있고, 이러한 기술과 산업과의 지식흐름에 대한 연계구조를 파악하기 위한 다양한 연구가 진행되었다. 그러나 우리나라 국가연구개발 사업의 기술 및 성과가 어떤 산업으로 흘러가는지에 대한 연구는 진행되지 않았다. 따라서 본 연구에서는 국가연구개발 사업의 $NTIS^{****}$ 정보를 활용하여 실제 국가 R&D에서 수행된 성과물인 특허 데이터를 활용하여 기술-산업에 대한 연계구조를 살펴보고자 한다. 이를 통해 기술과 산업사이의 지식흐름이 어떻게 흘러가고 있는지 분석한다. 연구자가 연구과제의 시작시점에서 예상하는 산업 적용분야와 연구가 종료된 후에 그 연구성과가 실제로 적용되는 기술-산업 적용분야를 밝히고자 하였다. 분석 결과, 다수의 과제는 R&D 시작 전에 예측한 산업분야로 지식흐름이 일어난 것으로 나타났다. 그러나 3개의 산업분야 Y09(의료, 정밀, 광학기기 및 시계), Y10(전기 및 기계장비), Y11(자동차 및 운송장비) 등은 연구자가 예상하지 못한 산업분야에 기술이 적용되는 것으로 분석되었다. 본 연구를 통해서 국가 R&D사업의 기술-산업의 지식흐름 관계를 살펴봄으로써 향후 기술-산업의 효율적인 성과 확산과 투자전략을 세우는 데 기여할 수 있을 것으로 보인다.
본 논문에서는 진화론적 기술경제학을 토대로 우리나라 국가연구개발사업에 투입되는 정부연구비의 성과를 여섯 가지 분석요인을 가지고 다각도로 분석하였다. 분석에는 2008년 3월부터 서비스를 시작한 국가과학기술지식정보서비스(National Science and Technology Information Service, NTIS)를 활용하였다. NTIS에서 2002년부터 2008년까지 연도별로 과학기술표준분류, 연구수행주체, 경제사회목적, 협력행태에 따른 정부연구비를 조사하였고, 이를 "투입"으로 놓았다. 그리고 이와 유사하게 2002년부터 2008년까지의 연도별 과학기술표준분류, 연구수행주체, 경제사회목적, 협력행태에 따른 논문 성과, 특허 성과, 사업화 성과, 기술료 성과를 조사하였고, 이를 "성과"로 놓았다. 우리는 이 자료의 분석결과를 통해서 정부연구비의 성과에 영향을 미치는 여러 가지 요인을 파악할 수 있을 것으로 기대하였고, 이것으로부터 정부연구비 투입의 방향성 또는 정책적 시사점을 제시할 수 있을 것으로 기대하였다. 다만 보다 미시적인 관점에서 산업 또는 기술의 특성, 연구수행주체가 갖는 조직의 특성, 협력연구 형태에 따른 네트워크의 특성, 사회 정치 문화적 외부 효과 등의 요인을 고려하지 못한 점은 이 연구의 한계점이라고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.