Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.59-62
/
2006
본 논문에서는 CNN 모델과 WFMM 신경망의 특성을 상호 결합한 손동작 인식기법을 제안한다. 특징 추출 모듈로 사용된 CNN 모델은 움직임 정보에 기초한 특징지도상에서 특징의 위치 이동이나 왜곡에 의한 성능 저하를 개선시키는 계층간 연결구조를 갖는다. WFMM 신경망에 기반한 패턴 분류 모듈은 간결하고 강력한 학습기능을 지원하며, 학습된 신경망은 분류 능력을 그대로 유지한 상태에서 추가 학습이 가능하다는 장점을 지닌다. 또한 이 패턴 분류 모델은 학습패턴으로부터 특징의 상대적 중요도를 평가하는, 이른바 특징 선정 기법을 지원한다. 본 논문에서는 제안된 모델의 동작 특성과 학습 알고리즘을 소개하고, 손동작 인식문제에 적용한 실험을 통하여 이론의 타당성을 평가한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.1-3
/
2022
최근 기존의 영상 압축 파이프라인 대신 신경망의 종단 간 학습을 통해 압축을 수행하는 알고리즘의 연구가 활발히 진행되고 있다. 본 논문은 종단 간 학습 기반 공간적 스케일러블 압축 기술을 제안한다. 보다 구체적으로 본 논문은 신경망의 각 계층에서 하위 계층의 학습된 특징 (feature)을 융합하여 상위 계층으로 전달하는 다중 스케일 특징 융합 (multi-scale feature fusion) 모듈을 도입해 상위 계층이 더욱 풍부한 특징 정보를 학습하고 계층 사이의 특징 중복성을 더욱 잘 제거할 수 있도록 한다. 기존 방법 대비 향상 계층(enhancement layer)에서 1.37%의 BD-rate가 향상된 결과를 볼 수 있다.
본 논문에서는 다수의 개념을 효과적으로 학습할 수 있는 논리적인 진화방식을, 보다 일반적인 문제에 적용하기 위하여 확장하였다. 기존의 알고리듬이 0 차 논리(zero-order logic)에 의해 표현되는 개념만을 학습할 수 있었던 점을 개선하여, 특징논리로 표현되는 개념까지 학습할 수 있도록 확장하였다. 또한 확장된 알고리듬을 이용하여, 실수입력을 가지는 개념 또한 학습할 수 있도록 하였다. 제안된 알고리듬은 이전의 알고리듬과 마찬가지로, 다수의 개념을 학습할 때, 이전의 학습결과를 이용하여 새로운 개념을 쉽게 학습할 수 있는 특징을 가지고 있다. 제안된 알고리듬에 의해 특징논리로 표현되는 개념을 학습할 수 있으며, 다수의 개념을 학습할 때 성능향상이 이루어지는 것을 실험을 통해 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.157-161
/
2003
본 논문에서는 차량의 주행경로 최적화를 위해 강화학습 개념을 적용하고자 한다. 강화학습의 특징은 관심 대상에 대한 구체적인 지배 규칙의 정보 없이도 최적화된 행동 방식을 학습시킬 수 있는 특징이 있어서, 실제 차량의 주행경로와 같이 여러 교통정보 및 시간에 따른 변화 등에 대한 복잡한 고려가 필요한 시스템에 적합하다. 또한 학습을 위한 강화(보상, 벌칙)의 정도 및 기준을 조절해 즘으로써 다양한 최적주행경로를 제공할 수 있다. 따라서, 본 논문에서는 강화학습 알고리즘을 이용하여 다양한 최적주행경로를 제공해 주는 시스템을 구현한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.3-4
/
2014
음악 장르 분류 분야에서는 다양한 특징을 모아서 특징 벡터를 만들고 이를 support vector machine (SVM)와 같은 분류기에 입력하는 시스템이 주로 사용되고 있다. 이 논문에서는 거리 함수 학습를 음악 장르 분류를 위한 특징 벡터의 간소화에 적용하였다. 여러 거리 함수 학습 방법 중 하나의 방법을 선택하고, 기존의 논문들에서 사용되었던 특징 셋을 활용하여 기존 특징 셋에 대해서 성능을 떨어뜨리지 않으면서 특징 셋의 길이를 줄일 수 있는지 살펴본다. 우리의 실험에서는 168차원의 특징 셋을 10차원까지 줄였는데, 이 경우 분류 정확도가 2% 이내로 저하되었다.
Speech recognition system is shall be composed model of learning from the inaccurate input speech. Similar phoneme models to recognize, because it leads to the recognition rate decreases. Therefore, in this paper, we propose a method of speech recognition optimal learning model configuration using the Bhattacharyya algorithm. Based on feature of the phonemes, HMM feature extraction method was used for the phonemes in the training data. Similar learning model was recognized as a model of exact learning using the Bhattacharyya algorithm. Optimal learning model configuration using the Bhattacharyya algorithm. Recognition performance was evaluated. In this paper, the result of applying the proposed system showed a recognition rate of 98.7% in the speech recognition.
Proceedings of the Korea Multimedia Society Conference
/
1998.04a
/
pp.411-416
/
1998
본 논문은 Wavelet 변환 영역에서 특징 벡터를 추출하여 ART2 신경회로망으로 실장 PCB 패턴을 인식하는 알고리즘을 제안한다. PCB 형태 정보는 Wavelet에 의해 주파수 영역으로 변환되고, 이들 계수 행렬로부터 특징 벡터로서 추출된다. ART2 신경회로망은 이러한 특징 벡터들을 입력벡터로 사용하여 인식한다. 실장 PCB 영상 55장을 사용하여 실험한 결고, 학습된 입력패턴은 물론 비학습 입력패턴에 대해서도 약 99%의 인식율을 얻었다. 또한 제안된 방법은 Wavelet 변환 영역사에서 수직, 수평, 대각선 정보만으로 특징 벡터를 구축함으로써 특징 추출 과정이 비교적 간단하고 특징 벡터의 수도 줄일 수 있어, 효과적인 특징벡터의 추출이 가능함을 보였다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.429-430
/
2019
본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.5
/
pp.70-77
/
1999
본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.164-167
/
2019
모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 본 논문에서는 다양한 특징점 추출 및 기계학습을 활용하여 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 통해 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97퍼센트로 정확도가 개선되었고 오탐률도 1.6%로 성능이 개선되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.