본 논문에서는 혼합형 데이터에 대한 특징 선별 기법의 효율성을 비교하기 위해 특징 필터링과 특징 래핑을 통한 특징 선별 후, 클래스 분류 성능을 측정하였다. 혼합형 데이터는 숫자형 특징과 범주형 특징이 함께 혼합되어 있으므로, 숫자형 특징을 범주형 특징으로 이산화를 하여 단일형 데이터로 변환한 뒤 특징 선별 기법 등을 적용할 수 있다. 본 연구에서는 혼합형 데이터를 전처리하여 단일형 데이터로 변환하고, 널리 활용되는 특징 필터링 기법과 특징 래핑 기법을 통해 클래스 분류 성능을 높일 수 있는 특징 집합을 선별하였다. 선별된 특징 집합을 통한 클래스 분류 성능을 비교한 결과, 특징 필터링에 비해 특징 래핑을 통해 선별한 특징 집합을 활용하여 클래스 분류를 하였을 때 분류 정확도가 높은 것을 확인할 수 있었다.
본 논문에서는 새로운 비지도 특징 선별 기법을 제안한다. 기존 비지도 방식의 특징 선별 기법들은 특징을 선별하기 위해 가상의 레이블 데이터를 정하고 주어진 데이터를 이 레이블 데이터에 사영하는 회귀 분석 방식으로 특징을 선별하였다. 하지만 가상의 레이블은 데이터로부터 생성되기 때문에 사영된 공간이 비슷하게 형성될 수 있다. 따라서 기존의 방법들에서는 제한된 공간에서만 특징이 선택될 수 있었다. 이를 해소하기 위해 본 논문에서는 직교 사영과 저랭크 근사를 이용하여 특징을 선별한다. 이 문제를 해소하기 위해 가상의 레이블을 직교 사영하고 이 공간에 데이터를 사영할 수 있도록 한다. 이를 통해 더 주요한 특징 선별을 기대할 수 있다. 그리고 사영을 위한 변환 행렬에 저랭크 제한을 두어 더 효과적으로 저차원 공간의 특징을 선별할 수 있도록 한다. 이 목표를 달성하기 위해 본 논문에서는 비용 함수를 설계하고 효율적인 최적화 방법을 제안한다. 여섯 개의 데이터에 대한 실험 결과는 제안된 방법이 대부분의 경우 기존의 비지도 특징 선별 기법보다 좋은 성능을 보여주었다.
본 논문에서는 다중 레이블 분류를 위한 특징 선별 기법을 제안한다. 기존 많은 특징 선별 기법들은 상호정보척도 등을 이용하여 특징과 레이블 사이의 연관성을 계산하여 특징을 선별하였다. 하지만 상호정보척도는 결합 확률을 요구하기 때문에 실제 전제 특징 집합에서 결합 확률을 계산하는 것은 어렵다. 따라서 소수의 특징만 계산이 가능하여 지역적 최적화만 가능하다는 단점을 가진다. 이런 지역적 최적화 문제를 피해, 주어진 특징 전체 공간에서 저랭크 공간을 구성하고, 희소성을 가진 특징들을 선별할 수 있는 특징 선별 기법을 제안한다. 이를 위해 뉴클리어 노름을 이용해 회귀 기반의 목적함수를 설계하였고, 이 목적 함수의 최적화 문제를 풀기 위한 경사하강법 방식의 알고리즘을 제안하였다. 4가지의 데이터와 3가지 다중 레이블 분류 성능을 기준으로 다중 레이블 분류 실험 결과를 통해 제안하는 방법론이 기존 특징 선별 기법보다 좋은 성능을 나타내는 것을 보였다. 또한 제안하는 목적함수의 파라미터 값 변화에도 성능 변화가 둔감한 것을 실험적인 결과로 확인하였다.
성별 분류 기술은 법의학, 감시 시스템, 인구 통계 연구 등 다양한 분야에서 활용될 수 있기 때문에, 연구자들로부터 많은 관심을 받고 있다. 남성과 여성의 보행 사이에는 서로 구별되는 특징이 있다는 것이 기존 연구들에서 밝혀지면서, 3차원 보행 데이터에서 성별을 분류하는 다양한 기술들이 제안됐다. 하지만, 기존 기술들을 사용해 3차원 보행 데이터로부터 추출한 보행 특징 중에는 서로 유사 또는 중복되거나 성별 분류에 도움이 되지 않는 특징들도 있다. 이에 본 연구에서는 상관관계 기반 특징 선별 기술을 활용해, 성별 분류에 도움이 되는 특징들을 선별하는 방법을 제안한다. 그리고 제안하는 특징 선별 기술의 효용성을 입증하기 위해서, 인터넷상에 공개된 3차원 보행 데이터 세트(Dataset)를 활용하여 제안하는 특징 선별 기술을 적용하기 전과 후에 대해 성별 분류 모델들의 성능을 비교 분석하였다. 실험에는 이진 분류 문제에 적용할 수 있는 여덟 가지의 머신러닝 알고리즘(Machine Learning Algorithms)을 활용하였다. 실험 결과, 제안하는 특징 선별 기술을 사용하면 성별 분류 성능은 유지하면서, 특징의 개수를 82개에서 60개까지, 22개를 줄일 수 있다는 것을 입증하였다.
본 논문에서는 수화인식을 위한 신경망에서 특징추출과 분류단계의 방법론과, 특징 선별 기법을 통하여 분류기의 규모를 최적화 하는 방법을 고찰한다. 색상 및 움직임정보로부터 특징영역의 시간에 따른 변화를 3 차원 볼륨형태의 데이터로 표현하며, 이로부터 특징지도를 생성하는 과정에서 특징영역의 위치에 대한 변이를 보완하는 방법을 고려한다. 특징추출과정과 패턴 분류과정에서 점진적 학습이 가능한 모델과 특징 수를 효과적으로 줄일 수 있는 방법론을 제시하였으며, 학습된 신경망으로부터 특징과 패턴 클래스간의 상대적 연관성 척도를 정의하여 특징을 선별하도록 하였다. 제안된 내용에 대하여 여섯 가지 수화패턴에 대상으로 한 실험을 통하여 그 유용성을 평가하였다.
본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.
본 논문에서는 불균형 및 Under-sampling된 바이오 데이터에 대하여 클래스 구분력이 없는 특징의 소거를 통해 이후 이어질 FLDA 둥 다양한 방법론올 적용할 수 있는 방법을 제안하고자 한다. 제안하는 알고리즘은 평균과 분산을 통해 클래스의 형태를 결정하는 기존 방법론의 문제점을 회피할 수 있는 방법을 제공하며, 클래스 구분력에 중점을 두어 특정을 선별하였을 경우 선별된 특정들의 상관 계수가 높은 문제를 극복할 수 있도록 한다. 이에 따라 알고리즘이 선택한 특정집합은 서로의 특징에 대해 상관계수가 낮으며, 클래스의 구분력이 높은 특정을 갖게 된다.
본 논문에서는 360 VR 멀티미디어 시스템에서 복수개의 카메라들이 촬영한 영상 신호들 간의 밝기 차이가 발생하여 360 VR 영상 품질을 저하시키는 것을 막기 위해, 360 VR 시스템에 적합한 밝기 보상 기법을 제안한다. 복수개의 카메라가 촬영한 영상들 간의 특징점들을 분석하고, 이 특징점들을 대상으로 누적 히스토그램을 계산한다. 그리고 이 누적 히스토그램을 기반으로 우선적으로 밝기 보상이 필요한 영상들을 선별한다. 선별된 영상들에 대해서 내부 특징점들의 누적 히스토그램과 외부 특징점들의 히스토그램들을 일치시키기 위한 룩업테이블을 제작하여, 선별된 영상 내부의 모든 화소들의 밝기값을 보상한다. 본 논문의 실험결과에서는 제안하는 알고리즘의 우수성을 히스토그램 보상 측면, 밝기보상 영상의 시각적인 평가, ERP 영상의 화질 평가, Viewport 영상의 화질 평가 등의 측면에서 보였으며, 다양한 기준들에서 제안한 방법이 기존 기술들보다 우수함을 보였다.
부분 공간 군집화는 고차원 데이터에서 의미 있는 특징들을 선별 및 추출하여 저차원의 부분 공간에서 군집화 하는 것이다. 그러나 최근 딥러닝 활용한 부분 공간 군집화 연구들은 AutoEncoder을 기반으로 의미있는 특징을 선별하는 것이 아닌 특징 맵의 크기를 증가시켜서 네트워크의 표현 능력에 중점을 둔 연구되고 있다. 본 논문에서는 AutoEncdoer 네트워크에 Channel Attention 모델을 활용하여 Encoder와 Decoder에서 부분 공간 군집화를 위한 특징을 강조하는 네트워크를 제안한다. 본 논문에서 제안하는 네트워크는 고차원의 이미지에서 부분 공간 군집화를 위해 강조된 특징 맵을 추출하고 이를 이용해서 보다 향상된 성능을 보여주었다.
빅데이터 분석을 위해 많이 사용하고 있는 기계학습 알고리즘들 중 딥러닝 알고리즘이 많이 활용되고 있으며 분류와 예측에 높은 정확도를 나타내고 있다. 딥러닝 알고리즘의 적용에 따른 많은 장단점들이 있지만, 단점은 분석에 사용되는 특징들이 너무 많다는 것과 분석 모델을 만드는데 사용되는 알고리즘도 여러 가지를 적용하다 보니 분석 시간이 오래 걸린다는 것이다. 이런 단점들은 업무를 파악하면 특징을 최소화할 수 있고 필요로 하는 정보만 선별해서 대표적인 딥러닝 알고리즘 하나에 분석을 하게 되면 분석 시간을 단축시킬 수 있다. 이 실험은 [1], [2]에서 연구한 영화 관객수 예측 모델을 4개의 특징으로 최소화하고 선별된 데이터를 인공신경망 알고리즘 하나로 예측 모델을 생성하였을 때 유의미한 정보를 도출해 낼 수 있는지를 알아보기 위한 것이다. 실험결과는 최종 관객수를 1명 단위까지 정확하게 예측하지는 못했지만 비슷한 수준의 관객수 정보를 예측하였다. 학문적인 접근으로 보았을 때 예측 정확도가 높지 않으면 사용이 불가능한 모델이라고 판단할 수 있지만, 기업 입장으로 접근해 보았을 때 예측 정보가 [1]. [2] 연구 결과에 비해 부족한 수준은 아니다. 총 소요된 시간은 기획 3일, 데이터 수집 및 모델 개발 5일, 분석 시간 10분으로 개발 시간 단축, 업무 효율성 향상, 비용 절감을 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.