• Title/Summary/Keyword: 특징 변수

Search Result 1,069, Processing Time 0.029 seconds

Analysis for River Network Classification based on Beta Distribution and Support Vector Machines (Beta Distribution 과 Support Vector Machines를 적용한 하천유역 분류 기법 개발)

  • Jung, Kichul;Shin, Ju-Yong;Um, Myoung-Jin;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.411-411
    • /
    • 2019
  • 지형학적으로 다양한 형상을 가지고 있는 하천유역은 지역적 조건에 따라 뚜렷한 특징을 나타낸다. 이러한 조건은 하천유역의 발달 및 수문학적 특징에 영향을 미친다. 금회 연구는 여러 가지 유역의 특징 중 유역을 대표할 만한 특징을 이용하여 간단하고 유용한 하천 유역 분류 기법을 제시하였다. 하천유역의 여러 특징 중 지류교차각(Tributary Junction Angle)은 유역을 분석하기 위해 많이 사용되었으며 다른 특징들과 함께 유역 구분을 위해 분석되어 왔다. 하지만, 지류교차각만 이용하여 유역 분류를 제시하는 기법은 연구되지 않았다. 하천유역 분류 기법 제시를 위해 수지형 유역, 평행형 유역, 부채형 유역, 직사각형 유역, 격자형 유역 등 5가지의 형태를 중심으로 50개의 하천유역을 사용하였고, 지류교차각의 Beta Distribution 모델을 적용하여 매개변수 추정치 산정 후 유역 분류를 위한 분석을 실시하였다. 매개변수 추정치는 각 유역 형태 구분을 위해 적용되었고, 이후 Support Vector Machines를 이용하여 하천유역 형태를 분류하도록 하였다. 분석을 통한 결과는 일반적인 통계기법과 다른 유역형태 구분 기법을 이용하여 검증하였다. 제안된 기법은 수지형, 평행형, 부채형 유역 형태들에 대하여 정확하게 분류할 수 있으며, 얻어지는 결과는 중요한 수문학적 정보 제공에 사용 될 것으로 판단된다. 금회 연구를 통해 Beta 분포형의 매개변수 추정치는 하천유역 분류 적용에 유용하게 사용 될 수 있음을 확인하였고, 하나의 주요 유역 인자로 유역 구분이 가능함을 제시하였다. 향후 연구로는 하천유역 분류를 통해 수문학적인 동질 유역을 구분하여 수문모델의 수행능력을 향상 시킬 수 있는 수문모델 분석과 개발에 적용 될 수 있을 것이다.

  • PDF

Robust 2D Feature Tracking in Long Video Sequences (긴 비디오 프레임들에서의 강건한 2차원 특징점 추적)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.473-480
    • /
    • 2007
  • Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.

A study on variable selection and classification in dynamic analysis data for ransomware detection (랜섬웨어 탐지를 위한 동적 분석 자료에서의 변수 선택 및 분류에 관한 연구)

  • Lee, Seunghwan;Hwang, Jinsoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.497-505
    • /
    • 2018
  • Attacking computer systems using ransomware is very common all over the world. Since antivirus and detection methods are constantly improved in order to detect and mitigate ransomware, the ransomware itself becomes equally better to avoid detection. Several new methods are implemented and tested in order to optimize the protection against ransomware. In our work, 582 of ransomware and 942 of normalware sample data along with 30,967 dynamic action sequence variables are used to detect ransomware efficiently. Several variable selection techniques combined with various machine learning based classification techniques are tried to protect systems from ransomwares. Among various combinations, chi-square variable selection and random forest gives the best detection rates and accuracy.

An Efficient Classification of Digitally Modulated Signals Using Bandwidth Estimation (대역폭 추정을 적용한 효율적인 디지털 변조 신호 분류)

  • Choi, Jong-Won;Ahn, Woo-Hyun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.257-260
    • /
    • 2017
  • In this letter, we propose an efficient automatic modulation recognition (AMR) method which classifies digitally modulated signals by estimating the bandwidth. In AMR, feature-based methods are widely used and the accuracy of the features is highly dependent on the number of symbols and the number of samples per symbol (NSPS). In this letter, at first, we coarsely estimate the bandwidth of the oversampled signals, and then decrease the sample rate to yield adequate NSPS. As a result, more symbols are used for AMR and the correct classification rate becomes high under the same number of samples.

A Piecewise Linear Transformation Method based on SPMF and Its Application to Linguistic Approximation (표준 매개변수 소속 함수에 기반을 둔 구간 선형 변환 방법과 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.351-356
    • /
    • 2001
  • 표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.

  • PDF

Analysis and Trend Curve Derivation of Major Design Parameters of Unmanned and Manned Rotorcrafts (유.무인 회전익기 주요 설계변수의 추세선 식 유도 및 비교 분석 연구)

  • Hwang, Chang-Jeon;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.26-35
    • /
    • 2006
  • Design parameters of manned and unmanned rotorcrafts have been investigated to construct a design database and to derive trend curves. Design parameters of 78 manned rotorcrafts and 33 unmanned rotorcrafts have been collected and analyzed using linear regression method. Six kinds of trend curves equations are derived. Most of trend curves derived are relatively meaningful according to the calculated correlation and determination coefficients. The comparisons between manned and unmanned rotorcraft characteristics are performed. It has been drawn according to the comparisons that unmanned rotorcraft has smaller main rotor diameter and maximum take-off weight, bigger tail rotor size and similar level of empty weight fraction than manned rotorcraft.

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

Metric Reconstruction for Augmented Reality (증강현실을 위한 매트릭 복원)

  • Yu, Jeong-Jae;Kim, Hye-Mi;Park, Chang-Jun;Kim, Hong-Seok;Lee, In-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.649-652
    • /
    • 2007
  • 이 논문에서는 영화, CF 같은 영상물 제작 시 CG/실사 합성을 위해 배경기하정보를 추출하는 알고리즘을 제안한다. Metric Reconstruction 은 카메라 자동 보정을 통해 이루어지며 이는 오랫동안 연구되어 온 분야이다. 접근방법은 영상의 특징점 추적 정보와 카메라 내부변수 가정으로부터 유도되는 자기 보정 방식과 공간상에서 미리 기하 정보를 알고 있는 보정틀을 사용하는 방식으로 크게 분류될 수 있다. CG/실사 합성의 작업 효율성을 위해서는 배경 영상에 보정틀이 보이지 않는 것이 좋은데 자연 특징점(Natural Feature)에만 의존하는 자기 보정 방식의 경우 2K 급 영상에서 CG 객체를 합성했을 때 떨림이 느껴지지 않을 만큼 정확한 결과를 얻기 힘들다. 이 논문에서는 Polleyfeys[2]가 제안하였던 영상 시퀀스를 입력으로 하는 자기 보정 시스템을 바탕으로 마야 작업 환경에서의 핀홀 카메라 모델에 맞도록 카메라 내부변수의 비선형 최적화를 수행하는 방법과 사용자 개입을 통한 카메라 변수 정확도 향상방법을 제안한다.

  • PDF

Performance Improvement of Polynomial Adaline Using Principal Component Analysis (주요성분분석을 이용한 Polynomial Adaline의 성능개선)

  • Cho, Yong-Hyun;Park, Yong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.313-316
    • /
    • 2001
  • 본 논문에서는 입력변수들의 차원을 감소시켜 polynomial adaline의 성능을 개선하는 방법을 제안하였다. 제안된 방법에서는 적응적 학습알고리즘의 주요성분분석 기법을 이용하여 입력변수의 특징을 추출하고 이를 polynomial adaline의 학습데이터로 이용하였다. 이는 주요성분분석 기법이 가지는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 속성을 살려 입력데이터의 차원을 감소시킴으로서 고차원의 데이터에 따른 polynomial adaline이 가지는 제약을 해결하기 위함이다. 제안된 기법의 polynomial adaline을 5 개의 입력변수를 가진 패턴분류 문제에 적용하여 시뮬레이션한 결과, 기존의 다차원 polynomial adaline보다 더욱 우수한 분류성능이 있음을 확인할 수 있었다. 그리고 커널함수의 평활요소 설정 면에서도 우수한 특성이 있음을 확인할 수 있었다.

  • PDF

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.