• 제목/요약/키워드: 특징 변수

검색결과 1,069건 처리시간 0.026초

분절 특징 은닉 마코프 모델에서의 경향 공유에 관한 연구 (A Study on Trend Sharing in Segmental-feature HMM)

  • 윤영선
    • 한국음향학회지
    • /
    • 제21권7호
    • /
    • pp.641-647
    • /
    • 2002
  • 본 논문에서는 경향 양자화 기법을 적용하여 분절 특징 은닉 마코프 모델 (HMM: hidden Markov model)의 매개 변수 수를 줄이는 방법을 제안한다. 제안된 방법은 분절 특징 HMM에서 사용하는 분절 특징, 즉 모수적 궤적을 위치 정보와 경향 정보로 분리한 후, 분리된 경향 정보를 경향 코드북을 이용하여 공유한다. 분절 특징에서 위치 정보는 특징의 기준 점을 나타내고, 경향 정보는 분절 특징의 변이를 의미하며 특징의 많은 부분을 차지하고 있다. 따라서 경향 정보가 공유될 수 있다면 분절 특징 HMM의 매개 변수 수를 줄일 수 있을 것이다. 실험 결과 제안된 방식이 기존의 시스템과 비슷한 성능을 보였으며 매개 변수 수를 줄이는 방안으로 고려될 수 있음을 보였다.

강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법 (Robust Feature Selection and Shot Change Detection Method Using the Neural Networks)

  • 홍승범;홍교영
    • 한국멀티미디어학회논문지
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • 본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.

  • PDF

적응적 상관도를 이용한 주성분 변수 선정에 관한 연구 (A Study on Selecting Principle Component Variables Using Adaptive Correlation)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.79-84
    • /
    • 2021
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하다. 주성분분석 방법은 고차원 데이터에 포함된 정보를 저차원의 데이터로 변환하여 원래 데이터의 변수 수보다 적은 수의 변수로 고차원 데이터를 표현 할 수 있는 방법으로서 데이터의 특징 추출을 위한 대표적인 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석에 있어서 주성분 변수 선정 시 적응적 상관도를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관 관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 다른 여러 변수에 중복적으로 상관도가 높은 변수와 주성분을 유도하는데 연관성이 적은 변수를 주성분 변수 후보 대상에서 제외시키고자 한다. 고유벡터 계수 값에 의한 주성분 위계를 분석하고 위계가 낮은 주성분이 변수로 선정이 되는 것을 막고 또한 상관 분석을 통하여 데이터의 중복 발생이 데이터 편향을 유도하는 것을 최소화하 하고자 한다. 이를 통하여 주성분 변수 선정 시 데이터 편향성의 영향을 줄임으로써 실제 데이터의 특징을 잘 나타내는 주성분 변수를 선정하는 방법을 제안하고자 한다.

분절 특징 HMM의 매개 변수 수의 감소에 관한 연구 (Reduction of Number of Free Parameters in Segmental-feature HMM)

  • 윤영선;오영환
    • 한국음향학회지
    • /
    • 제19권7호
    • /
    • pp.48-52
    • /
    • 2000
  • 음성 인식에 많이 사용되는 HMM (hidden Markov model)을 개선하기 위하여 분절 특징을 사용한 분절 특징 HMM은 성능이 우수하다고 발표되었다. 그러나, 분절 길이가 증가하고 회귀 차수가 놓아질수록 분절 특징 HMM을 표현하는 매개 변수의 수도 같이 증가된다. 따라서, 본 연구에서는 상태에서 관측 가능한 분절의 분산을 분절 내의 모든 프레임에 대하여 공통적으로 표현하는 고정 분산 방법을 통하여 성능의 저하 없이 매개 변수의 수를 줄이도록 시도하였다. 실험 결과, 두 혼합 밀도인 경우 고정 분산을 이용한 분절 특징 HMM의 성능과 시변 분산을 이용한 성능의 차이가 거의 없어, 제안된 방법의 유효성을 입증하였다.

  • PDF

분절 특징의 경향 공유에 관한 연구 (A study on trend tying of the segmental-feature)

  • 윤영선
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.17-20
    • /
    • 2001
  • 본 논문에서는 분절 특징 HMM(SFHMM)의 매개변수를 줄이는 방법을 제안한다 SFHMM이 HMM보다 우수한 성능을 보이더라도, SFHMM의 매개 변수 수는 HMM보다 많기 때문에 매개 변수 수를 줄이는 방법에 대한 연구가 필요하다. 일반적으로 궤적(trajectory)은 경향(trend) 정보와 위치(location) 정보로 분리될 수 있다. 경향은 분절 특징의 변이를 나타내며, SFHMM 변수의 많은 부분을 담당하기 때문에, 경향 정보를 공유할 수 있다면 SFHMM의 매개 변수 수는 감소될 수 있을 것이다. 제안된 방법은 궤적의 경향 정보를 양자화(quantization)에 의하여 공유한다. 제안된 방법의 성능을 살펴보기 위하여 영어 데이터베이스인 TIMIT 자료를 사용하여 실험하였다. 실험 결과 제안된 방법의 성능은 기존 연구와 거의 유사하나, 궤적의 다양한 정보를 이용한다면 궤적 정보의 공유에 의하여 매개 변수를 줄일 수 있을 것으로 보인다.

  • PDF

적응적 상관도를 이용한 주성분 분석에 관한 연구 (A Study on PCA using Adaptive Correlation)

  • 고명숙
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.13-14
    • /
    • 2020
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하며 주성분분석 방법은 대표적인 특징 추출 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석의 주성분 변수 선정시 적응적 상관도(Correlation)를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 실제 데이터의 특징을 나타내는 세분화 변수 선정 시 데이터 편향성의 영향을 줄이기 위한 방법이다.

영상 데이터베이스 검색을 위한 Temporal texture 모델링의 성능분석 (Performance Analysis of Temporal Texture Modeling for Image Database Retrieval)

  • 홍지수;김도년;김영복;조동섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (하)
    • /
    • pp.1661-1664
    • /
    • 2000
  • 내용 기반의 비디오 검색에 있어 텍스처는 중요한 변수로 사용될 수 있다. 모든 물체의 표면은 독특한 성질을 보유하고 있으므로, 텍스처는 형상이나 색과 더불어 중요한 변수로 사용될 수 있다. 어떤 영상의 특징을 올바르게 추출하고 잘 분류하여 표현하는 것은 비디오 검색에 있어서 매우 중요하다. Temporal texture는 무한한 시공간적 범위의 복잡하고, 추상적인 움직임 패턴이며 자연 세계에 흔히 나타난다. 그러므로 이를 특징화시킬 수 있고, temporal texture 패턴을 얼마나 잘 이용할 수 있느냐는 비디오 검색의 성능에 많은 영향을 끼칠 수 있다. 본 논문은 temporal texture 모델링들 중 서로 다른 특징을 가진 세 가지의 모델을 선정하여 비교, 분석한다. 특히, 특징 추출의 분류가 정확하게 이루어지느냐에 초점을 맞추어서 분석하였다. 분류의 성능은 두 가지 변수 즉, 어떤 성질의 모델이며 비디오 데이터인가에 따라 달라지게 된다. 이들 모델링이 분류하기까지 걸리는 시간의 차이는 무시할 수 있을 정도의 시간차이므로, 정확도를 위주로 성능을 분석했다.

  • PDF

단기 전력수요 예측을 위한 유전 알고리즘 기반의 특징 선택 기법 (Genetic Algorithm-Based Feature Selection Scheme for Short-Term Load Forecasting)

  • 박성우;문지훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.813-816
    • /
    • 2019
  • 최근 에너지 부족 문제 및 환경 문제의 해결수단으로 스마트 그리드가 많은 주목을 받고 있다. 스마트 그리드 기술은 에너지를 효율적으로 사용하는 데 도움을 주며, 이를 위해서는 더욱 정확한 전력수요 예측이 필요하다. 다양한 기계학습 기법 기반의 전력수요 예측 모델은 좋은 예측 성능을 보이지만 입력 변수의 개수가 증가할수록 처리해야 하는 데이터의 양이 기하급수적으로 증가한다는 단점이 존재한다. 또한, 불필요한 데이터를 입력 변수로 선정할 경우에는 모델의 정확도가 저하될 수도 있다. 이러한 문제를 해결하기 위해 다양한 특징 선택 기법들이 제안되었지만, 기존의 특징 선택 기법은 모델의 성능을 고려하지 않았기 때문에 실제 적용 시 오히려 모델의 성능이 저하될 수도 있다. 이에 본 논문은 유전 알고리즘을 기반으로 한 특징 선택 기법을 제안한다. 유전 알고리즘을 통해 각 모델에 맞는 최적의 입력 변수를 선택함으로써 빠른 학습 속도와 높은 정확도를 기대할 수 있다.

특징형상 변수를 이용한 사출성형에서의 에어트랩 최적화를 위한 연구

  • 이동화;김성근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 추계학술대회 논문요약집
    • /
    • pp.231-231
    • /
    • 2003
  • 사출성형에서의 지금까지의 에어트랩 문제의 해결법은 사출금형 내에 유동적 관계와 사출성형 기술자의 경험으로 해결했었다. 본 연구에서는 에어트랩 문제를 해결하기 위하여 금형을 설계할 때 미리 에어트랩의 위치를 알고 금형 디자인을 수정하여 사출 시간의 단축과 사출성형의 경제적 효과를 얻고자 한다. 사출성형을 할 때 에어트랩의 불량이 많이 발생하는 특징 형상들을 선정하여 각각의 특징형상들을 다시 해석하여 각각의 특징형상들의 에어트랩의 발생위치와 발생률을 알아내고, 사출금형설계에서 에어트랩불량이 일어날 형상들을 특징형상 변수에 대응시켜 최적의 형상으로 수정절차를 개발하였다. 여기서, 사출속도의 조절, 금형 온도의 조절, 수지온도 조절, 금형내의 압력 조절, 벤트의 설치 등은 최적의 상태로 고정시키고 형상수정 요소로 형상의 두께, 각도, 깊이, 필렛, 모 따기를 선정하여 특징형상 상관관계 모델을 구성하였다.

  • PDF

UChoo 알고리즘을 이용한 생물 조기 경보 시스템 (Biological Early Warning Systems using UChoo Algorithm)

  • 이종찬;이원돈
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.33-40
    • /
    • 2012
  • 본 논문은 생물 조기 경보 시스템을 구현하기 위한 방법을 제안한다. 이 시스템은 모니터링 데몬을 이용해 간헐적으로 데이터 사건을 생성하고, 이 데이터 집합으로부터 특징 매개변수들을 추출한다. 특징 매개변수는 6개의 변수(x/y 축 좌표, 거리, 절대 거리, 각도, 프랙털 차원)를 가지고 유도된다. 특히 프랙털 이론을 사용해 제안 알고리즘은 입력된 특징들이 독성 환경에 있는지 아닌지의 유기물 특성을 정의한다. 추출된 특징 데이터를 학습하기 위한 적절한 알고리즘을 위해 기계학습 분야에서 널리 쓰이는 확장된 학습 알고리즘(UChoo)을 사용한다. 그리고 본 알고리즘은 특징 집합들이 모니터링 데몬에 의해 주기적으로 추가된다는 BEWS의 특징을 극복하기 위해 확장된 데이터 표현 방법을 이용하는 학습 방법을 포함한다. 이 알고리즘에서 결정트리 분류기는 확장된 데이터 표현에서 가중치 매개변수를 사용하는 부류 분포 정보를 정의 한다. 실험 결과들은 제안된 BEWS가 환경적인 독성을 탐지하는데 이용 될 수 있음을 보인다.