Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.258-265
/
2002
베이지안망은 기존의 방법에 비해 불확실한 상황에서도 지식을 표현하고 결론을 추론하는데 유용한 것으로 알려져 있다. 본 논문에서는 대표적인 베이지안망 분류기들을 제시하고, 동일 임상데이터에 대해 서로 다른 유형별 베이지안망 분류기들을 학습하였다. 베이지안망을 적용할 때 변수의 수가 많아짐에 따라 베이지안망의 구조를 학습하는데 탐색공간이 넓어져 어려움이 있다. 본 연구에서는 이런 탐색공간을 효율적으로 줄이기 위하여 클래스 노드의 Markov blanket에 속한 특징들로 집합을 축소하는 것을 제안하고, 실험을 통해 이 특징 축소방법이 베이지안망 분류기들의 성능을 높여 줄 수 있는지 알아보았다. 분류기들의 성능에서는 축소한 특징집합으로부터 얻은 베이지안망으로 확장한 나이브 베이지안망 분류기가 가장 우수한 정확도를 가짐을 실험을 통해 알 수 있었다.
Kim Pyoung-Hwan;Han Hag-Yong;Kim Chang-Keun;Koh Si-Young;Hur Kang-In
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.53-56
/
2004
본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06a
/
pp.67-75
/
1996
컴퓨터를 이용한 문서정보의 처리를 위해서는 기본적으로 문서영상내의 각 특징영역을 분리하는 것이 필수적이다. 본 논문에서는 노이즈가 존재하는 non-manhattan layout 이치 문서영상내의 halftone 이미지, 선 및 텍스트 등의 중요한 특징영역들을 자동으로 구분 추출하는 효과적인 알고리즘을 제안한다. 제안한 알고리즘의 기본적인 아이디어는 먼저 처리속도의 고속화를 위하여 원본 영상을 축소시키는 것이 필수적인 바, 축소 시 노이즈의 제거와 동시에 축소된 영상 내에서 원하는 영역의 특징들이 잘 나타나도록 하는 임계치 축소기법을 제안 사용하여 축소영상을 만든 다음, 축소영상에 다양한 모폴로지 필터를 적용함으로써 각 알고리즘의 성능을 이용한 노이즈 문서영상을 이용한 시뮬레이션을 통하여 보인다.
Color histograms have been used as feature vectors to characterize the color features of given images, but they have a limitation in efficiency by generating high-dimensional feature vectors. In this paper, we present a method to reduce the dimension of the feature vectors by applying PCA (principal components analysis) to the color histogram of a given vehicle image. With SVM (support vector machine) method, the dimension-reduced feature vectors are used to recognize the colors of vehicles. After reducing the dimension of the feature vector by a factor of 32, the successful recognition rate is reduced only 1.42% compared to the case when we use original feature vectors. Moreover, the computation time for the color recognition is reduced by a factor of 31, so we could recognize the colors efficiently.
Song, Min Kyun;Kim, HyunSoo;Moon, Chang-Bae;Kim, Byeong Man;Oh, Dukhwan
Journal of Korea Society of Industrial Information Systems
/
v.18
no.4
/
pp.25-35
/
2013
This paper focuses on building a generalized mood classification model with many mood classes instead of a personalized one with few mood classes. Two methods are adopted to improve the performance of mood classification. The one of them is feature reduction based on standard deviation of feature values, which is designed to solve the problem of lowered performance when all 391 features provided by MIR toolbox used to extract features of music. The experiments show that the feature reduction methods suggested in this paper have better performance than that of the conventional dimension reduction methods, R-Square and PCA. As performance improvement by feature reduction only is subject to limit, modular neural network is used as another method to improve the performance. The experiments show that the method also improves performance effectively.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.745-748
/
2004
얼굴 이미지의 대부분은 표본의 수보다 특징 변수의 수가 많기 때문에 이러한 점을 고려한 특징 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특징 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특징을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.761-764
/
2004
얼굴 데이터를 사용하는 인식 시스템에서 특징 벡터의 차원은 일반적으로 매우 크다. 패턴인식에서 차원 축소는 중요한 문제로서, 효과적인 얼굴 인식을 위한 특징 벡터의 차원 축소는 필수적이라 할 수 있다. 본 논문에서는 획득된 얼굴 데이터로부터 저 차원의 강건한 특징을 얻기 위하여 웨이블릿을 사용하고, 식별력 있는 특징을 얻기 위하여 direct linear discriminant analysis를 사용하였다. Direct linear discriminant analysis 방법을 사용하기 이전에 웨이블릿을 사용함으로써 계산 복잡도를 줄여줄 뿐만 아니라 식별력을 높여주고 효과적으로 얼굴 데이터의 차원을 축소할 수 있음을 보여 준다. 얼굴의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였으며, 최근접 평균 분류기를 사용함으로써 분류를 위한 시간을 최소화하였다. 본 논문에서 인간의 얼굴인식을 위해 제시한 방법이 얼굴패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.
Han Hag-Yong;Lee Kwang-Seok;Go Si-Yong;Hur Kang-In
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.5
/
pp.986-994
/
2005
This Paper proposes the likelihood-based nonlinear dimension reduction method of the speech feature parameters in order to construct the voice activity detecter adaptable in noisy environment. The proposed method uses the nonlinear values of the Gaussian probability density function with the new parameters for the speec/nonspeech class. We adapted Likelihood Ratio Test to find speech part and compared its performance with that of Linear Discriminant Analysis technique. In experiments we found that the proposed method has the similar results to that of Gaussian Mixture Models.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1997.11a
/
pp.71-74
/
1997
본 논문은 일반적으로 제약 없는 형식 문서 즉, 논-맨하탄(non-manhattan) 형식의 이진문서영상을 분석하는 기법으로서, 연결요소기법에 기반한 특징추출과 이를 이용한 영역분리 및 분류에 관한 새로운 방법을 제안한다. 제안한 방식은 바텀-업(bottom-up)방식으로서 먼저 처리속도의 고속화와 축소시 특징 영역보존을 위해 임계치 축소기법을 사용하고, 축소된 이진 문서영상내의 각 연결된 검은 화소의 집합을 개체화하고 개체의 특성에 따라 텍스트, 신성분, 해프톤, 도형 그리고 표 등으로 분류한다. 영역분류는 두단계로 이루어지는데, 1차분류에서는 우선, B/W 비, 면적, 외각 테두리의 높이와 너비 비, 테두리선유무 등의 특징을 이용하여 해프톤, 수평 수직선, 테두리(표 및 도형)영역을 분리한다. 이후 2차 분류에서는 문자성분의 수평결합을 통한 텍스트행 성분을 추출한다. 마지막 후처리 과정으로 표분석 알고리듬을 통하여 테두리 영역중 표와 도형을 정확히 구분하고, 또한 도형에 관련한 문서성분을 해당 도형 개체에 연결하는 작업을 수행함으로써 완벽한 영역분류를 한다. 다양한 문서영상을 이용한 시뮬레이션을 통해 제안한 알고리듬의 성능을 입증한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.595-597
/
2004
본 연구에서는 베이지안망을 기초로 불임환자의 임상 데이터에 대한 다양한 실험을 전개한다. 실험을 통해 임신여부에 영향을 주는 요인들간의 상호 의존성을 분석하고. 또 제약조건이 다른 다양한 베이지안망의 대표적 유형으로 나이브 베이지안망(NBN), 베이지안망으로 확장한 나이브 베이지안망(BAN), 일반 베이지안앙(GBN) 분류기들의 분류성능을 서로 비교 분석한다. 베이지안망을 적응할 때 변수의 수가 많아짐에 따라 베이지안망의 구조를 학습하는데 탐색공간이 넓어져 시간의 요구량이 급격히 많아진다. 따라서 이런 탐색공간을 효율적으로 줄이기 위하여 클래스 노드의 Markov blanket에 속한 특징들로 집합을 축소하는 것을 제안하고, 실험을 통해 이 특징 축소 방법이 베이지안망 분류기들의 성능을 높여 줄 수 있는지 알아본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.