• Title/Summary/Keyword: 특징추적

Search Result 1,089, Processing Time 0.03 seconds

Target Window Adjustment Method for feature point tracking in infra-red images (적외선 영상에서 특징점 추적을 이용한 추적창 조절)

  • Kang, Jai-Woong;Sung, Gi-Yeul;Jung, Young-Hun;Kim, Su-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.297-298
    • /
    • 2013
  • 본 논문에서는 IR 영상추적을 위하여 가린 표적의 실제 중심을 예측하는 추적창 조절(target window adjustment) 기법을 제시한다. 대표적 분할 추적(patch tracking) 방식인 특징점 추적(feature point tracking)은 표적의 중심과 특징점을 coupling하여 가린 표적의 실제 중심을 예측할 수 있으나, 형상 정보가 적은 영상에서 표적의 ROI(Region of Interest)는 특징점의 분포만으로는 구할 수 없다. 본 논문에서는 상관추적의 추적창 조절 기법과 특징점 추적의 coupling 기법을 결합하여 표적이 장애물에 가리는 경우에도 안정적인 추적창을 유지한다.

  • PDF

Robust 2D Feature Tracking in Long Video Sequences (긴 비디오 프레임들에서의 강건한 2차원 특징점 추적)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.473-480
    • /
    • 2007
  • Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Natural Feature Tracking Using Optical Flow On Mobile Devices (광류 추적 기법을 사용한 모바일 기기에서의 자연 특징 추적)

  • Bae, Byeong-Jo;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.562-565
    • /
    • 2010
  • 시각기반 증강현실 시스템의 구현을 위해서는 입력되는 카메라영상의 프레임을 매번 특징점을 추출하고 패턴 매칭 과정을 반복하는 것은 저 사양의 모바일 기기에서는 적합하지 않다. 본 논문에서는 이러한 문제점을 해결 하고자 카메라영상에서 패턴이 한번 인식되게 되면 그 이후의 영상에 대해서는 패턴 인식과정을 생략하고 이전 영상에서 매칭된 특징점을 광류 기반 추적기법을 사용하여 추적하도록 한다. 또한 패턴 추적 절차의 수행 중 추적이 실패하여 생기는 특징점 소실 문제는 정확한 호모그래피 행렬과 카메라 자세 추정을 어렵게 하는데 이러한 문제를 해결하도록 하는 패턴 추적의 성공 또는 실패는 판단하는 기준을 세워 모바일 기기에서 빠르게 동작하도록 하는 광류 추적 기법을 사용한 자연 특징 추적 기반 증강현실 시스템을 제안한다.

pseudo feature point removal using direction connectivity tracing (방향 연결성 추적을 이용한 의사 특징점 제거)

  • Kim, Kang;Lee, Keon-Ik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.69-72
    • /
    • 2011
  • 본 논문에서는 방향 연결성 추적을 이용한 의사 특징점 제거에 관하여 연구하였다. 특징점을 추출하는 방법에는 교차수를 이용한 방법이 있다. 그러나 교차수를 이용한 방법에서는 의사 특징점이 많이 추출된다. 교차수를 이용한 방법에서 잘못 추출된 특징점들을 방향 연결성 추적을 이용한 의사 특징점 제거 알고리즘을 이용하여 의사 특징점을 제거하였다. 성능 평가를 위하여 교차수를 이용한 방법과 방향 연결성 추적을 이용하여 추출된 실제 특징점을 비교하였으며, 실험결과 방향 연결성 추적을 이용하여 많은 의사 특징점이 제거되었음을 알 수 있었다.

  • PDF

3D Object tracking with reduced jittering (떨림 현상이 완화된 3차원 객체 추적)

  • Kang, Minseok;Park, Jungsik;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.185-188
    • /
    • 2015
  • 미리 저장된 객체의 3차원 특징점(Feature point) 좌표와 카메라 영상의 2차원 특징점 좌표를 매칭(Matching)하여 객체를 추적하는 방식의 경우, 카메라의 시점이 변할 때 특징점에서 발생되는 원근 효과(Perspective effect)가 반영되지 못하여 특징점 매칭 오류가 발생한다. 따라서 특징점에서 발생하는 원근 효과를 반영하여 정확한 카메라 포즈를 추정하기 위해 이전 프레임(Frame)의 카메라 포즈(Camera Pose)에 맞추어 텍스쳐가 포함 된 3차원 객체의 모델을 렌더링 하여 원근 효과를 적용한 후, 현재 카메라 영상과 특징점 매칭하여 프레임 사이의 카메라 움직임을 구하여 객체를 추적한다. 더 나아가 본 논문에서는 특징점 매칭에서 발생하는 작은 오류들로 인한 미세한 카메라 움직임은 2단계의 임계치(Threshold)를 적용하여 떨림 현상으로 간주하여 떨림 현상이 제거된 객체 추적을 수행한다. 매 프레임마다 카메라 포즈에 맞춘 추적 객체를 렌더링 하기 때문에 떨림 현상으로 간주되어 제거된 카메라 움직임은 누적되지 않고, 추적 오류도 발생시키지 않는다.

  • PDF

Efficient Multiple Object Tracking without Appearance Features (외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법)

  • Lee, Hyemin;Kim, Daijin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.872-874
    • /
    • 2021
  • 본 논문은 외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법을 제안한다. 본 논문의 목적은 다중 물체 추적 방법이 합성곱 신경망 등의 외형 특징을 사용하지 않고 순수한 모션 모델의 힘으로 도달할 수 있는 최대의 성능을 찾는 것이다. 많은 다중 물체 추적 방법들이 추적 대상들 간의 유사성을 파악하기 위해 외형 특징을 사용한다. 하지만 다양한 외형 특징들을 갖는 방법들은 기본 특징 추출 알고리즘이 다르고, 다중 추적의 성능 향상이 어느 부분으로부터 오는지 정확히 파악할 수 없다. 또한, 각각 다른 매칭 알고리즘과 특징 디자인은 서로 다른 알고리즘의 효과를 순수하게 비교할 수 없다. 이러한 관점에서, 본 연구에서는 어떠한 외형 특징을 사용하지 않고 명확하게 추적 알고리즘의 효율성을 비교할 수 있는 가이드라인을 제시한다. 외형 특징을 사용하지 않고도 실용적으로 사용 가능한 성능에 도달할 수 있음을 공인 MOT2016, MOT2016 데이터셋에 대한 실험을 통해 증명한다. 이러한 방법은 GPU 를 사용하지 않고 200 fps 이상의 높은 속도를 보여 실시간 속도를 요구하는 임베디드 시스템 상의 어플리케이션에 적합하다.

Efficient Multi-Object Trajectory Using Robust Color Relationship Feature Vector (칼라 관계 특징벡터를 사용한 효율적인 멀티오브젝트 추적)

  • 김민철;최창규;류상률;김승호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.778-780
    • /
    • 2004
  • 본 논문에서는 오브젝트가 서로 겹쳤다가 분리되는 상황 하에서도 오브젝트를 정확히 추적할 수 있는 칼라관계(color relationship)특징 벡터를 제안한다. 오브젝트의 정확한 추적경로와 이벤트 검출을 위하여 신뢰성 있는 특징 벡터 추출은 필수적이다. 향상된 오브젝트 추적을 위해 면적. 크기뿐만 아니라 본 논문에서 제안한 칼라관계 특징 벡터를 사용한다. 실험 영상에 적용한 결과 제안된 방법을 사용하였을 경우 멀티오브젝트의 영상에서 겹침(occlusion)과 나타남(disocclusion)이 발생하는 경우에도 정확한 경로 추적이 이루어짐을 볼 수 있었다

  • PDF

Tracking of Facial Feature Points related to Facial Expressions (표정변화에 따른 얼굴 표정요소의 특징점 추적)

  • 최명근;정현숙;신영숙;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems (실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적)

  • 김상진;신정호;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.23-34
    • /
    • 2004
  • In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.