• Title/Summary/Keyword: 특징점 추출과 추적

Search Result 155, Processing Time 0.029 seconds

Denoising Method Using Reconstructed Frame Based On Event (이벤트 기반으로 복원한 영상에서의 노이즈 제거 방법)

  • Paek, Seung-han;Song, Do-hoon;Park, Jong-il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.196-199
    • /
    • 2020
  • 밝기 차이가 발생할 때마다 비동기적으로 영상을 획득하는 이벤트 카메라는 기존의 프레임 기반 카메라가 가지고 있는 한계점을 보완하기 위해 사용된다. 이벤트는 비동기적으로 획득되고 프레임보다 훨씬 빠르게 작동할 수 있기 때문에, 이를 활용하는 방안은 다양하다. 본 논문에서는 기존의 프레임 기반 카메라를 대체하여 사용하기 위해 이벤트만 활용하여 프레임 형태의 영상을 복원한 선행연구를 기반으로 한다. 복원한 영상의 노이즈를 제거하는 방법을 제시하고, 기존의 노이즈 제거 방법들과 비교하여 성능을 평가한다. 또한 기존에 있는 대표적인 특징점 추출방법을 노이즈를 제거한 영상에 적용해보고, 복원된 영상에서의 특징점 추출에 적합한 추출방법을 확인한다. 이 결과는 프레임 기반의 특징점을 추출하여 추적하는 다양한 분야에서 기존의 카메라를 체제할 수 있다.

  • PDF

Optimization Approach for Pose Determination of Human Head Using Multi Feature Points From an Uncalibreated Camera (다특징점 정보 및 최적화 기반 비조정 카메라 영상으로부터 머리 움직임 추정 방법)

  • Song, Min-Gyu;Kim, Jin-Young;Na, Seung-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.199-200
    • /
    • 2008
  • 머리의 자세 및 움직임 추적은 응시추적 및 시각운율 연구에서 필수적이다. 일반적으로 머리자세를 추정하는 방법은 보정된 카메라를 통해 추출된 얼굴의 특징점 정보를 이용한다. 그러나 실제 응용 분야에서는 보정되지 않은 카메라를 통한 머리 움직임을 추정해야 할 경우가 발생한다. 이에 따라 본 논문에서는 보정되지 않은 하나의 카메라를 이용, 단일특징점 정보를 이용한 머리 자세 추정 방법을 확장하여 최적화 기법을 도입한 다특징점 정보 기반 머리 자세 추정방법에 대하여 논하였다.

  • PDF

Emotion Recognition of User using 2D Face Image in the Mobile Robot (이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식)

  • Lee, Dong-Hun;Seo, Sang-Uk;Go, Gwang-Eun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF

RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition (3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법)

  • Park, Noh-Young;Jang, Young-Kyoon;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

Extraction of Facial Feature Component using Section Segmentation of Block-units (블록단위 영역분할을 이용한 얼굴 특징 요소 추출)

  • 김승업;이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Extraction of Hypertension Blood flow of Brachial Artery from Color Doppler Ultrasonography by Using 4-directional Contour Tracking Algorithm and Enhanced FCM Method (4 방향 윤곽선 추적 알고리즘과 개선된 FCM 방법을 이용한 색조 도플러 초음파 영상에서 상완 동맥의 고혈압 혈류 추출)

  • Yu, Seong-won;Jung, Young-hun;Shim, Sung-bo;Kim, Hye-ran;Kim, Min-ji;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.71-73
    • /
    • 2017
  • 본 논문에서는 4 방향 윤곽선 추적 기법과 히스토그램 분석 기법을 기반으로 한 개선된 FCM 알고리즘을 적용하여 색조 도플러 초음파 영상에서 상완 동맥의 혈류를 추출하고 분석하는 방법을 제안한다. 제안된 방법에서는 상완 동맥의 혈류를 정확히 추출하기 위해 전처리 과정으로 색조 도플러 초음파 영상 이외의 환자 정보가 있는 영역을 제거한 후, ROI 영역을 추출한다. 추출된 ROI 영역에서 영상의 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥이 존재하는 사다리꼴 형태의 영역을 추출한다. 색 정보를 분석한 히스토그램을 이용하여 특징점의 개수를 계산하고 계산된 특징점의 개수를 FCM 알고리즘의 초기 클러스터의 개수로 설정한 후, 추출된 사다리꼴 형태의 영역에 적용하여 양자화 한다. 양자화된 영역 중에서 빨간색으로 분류된 영역을 고혈압 영역으로 추출한다. 제안된 추출 방법을 20개의 색조 도플러 초음파 영상을 대상으로 실험한 결과, 20개의 색조 도플러 초음파 영상에서 18개의 색조 도플러 초음파 영상이 정확히 추출되었다.

  • PDF

Fast Car Model Recognition Algorithm using Frontal Vehicle Image (차량 전면 영상을 이용한 고속 차량 모델 인식 알고리즘)

  • Jung, do-wook;Kim, hyoyeon;Choi, hyung-il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.305-306
    • /
    • 2015
  • 과속차량 단속카메라에 촬영된 차량 전면 영상은 차량번호를 인식하여 과속차량에 과금하는 용도로 사용되나 범죄 용의자 차량을 추적하기 위한 용도로도 사용되어진다. 본 연구에서는 국소특징점의 정합을 이용하여 차량 모델을 찾는 방법을 넘어서 실시간으로 차량 모델을 찾기 위한 알고리즘을 제안한다. 입력된 영상에 대하여 차량의 모델을 특징지을 수 있는 헤드라이트를 포함한 차량의 그릴 영역을 관심영역으로 제한하고 관심영역에서 추출된 특징점들을 모델 특징벡터 데이터베이스의 자료와 비교하는 방법 을 사용하였다. 입력 영상의 크기 변화와 조명 변화에 강인한 SURF 국소특징점을 이용한 매칭 방법은 차량 모델을 찾는데 적합하나 선형적으로 탐색하는데 시간이 오래걸린다. 따라서 블러를 사용하여 차량 이미지에서 추출되는 특징점들의 수를 매칭이 가능한 수준으로 낮추는 방법으로 모델 자료로부터 탐색에 필요한 시간을 단축시켰다. 또한 모델 자료를 구조화하여 탐색시간을 줄이는 방법들을 비교하여 LSH 를 사용한 결과 차량 모델을 탐색하는데 필요한 시간이 단축됨을 보였다.

  • PDF

Touchless User Interface Based on Pattern Analysis (패턴 분석 기반의 비접촉 사용자 인터페이스 기법)

  • Jang, Won-Dong;Jung, Il-Lyong;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.309-310
    • /
    • 2010
  • 본 논문에서는 패턴 분석 기반의 비접촉 사용자 인터페이스 제어 기법을 제안한다. 본 기법은 카메라가 장착된 기기에서 입력 받은 실시간 영상을 사용하여 패턴의 정보를 분석한다. 정의된 패턴을 기반으로 최초의 패턴 위치를 예측하고, 특징점 추출 기반 추적 기법을 통해 패턴의 위치를 갱신한다. 휴대용 기기의 다양한 사용 환경에 적합하도록, 정규 상관 계수와 특징점 추출 정보를 사용하여 패턴의 예측, 추적을 수행함으로써 밝기 변화에 강인한 사용자 인터페이스 기법을 제안한다. 실험을 통하여 본 논문이 제안하는 알고리즘이 기존의 방법에 비해 우수한 성능을 나타냄을 확인한다.

  • PDF