• 제목/요약/키워드: 특징점 유사도

검색결과 563건 처리시간 0.027초

AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템 (Robust Face Recognition System using AAM and Gabor Feature Vectors)

  • 김상훈;정수환;전승선;김재민;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.

홈트레이닝을 위한 관절 특징점 검출 및 행동 유사도 측정 (Joint keypoints detection and behavioral similarity measurement for home training)

  • 강도희;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.317-318
    • /
    • 2020
  • 언택트 문화가 활성화되면서 다양한 업체에서 홈트레이닝 어플리케이션이 출시되고 있다. 많은 어플리케이션이 관절 특징점 검출 기능을 제공하여 사용자에게 편리함을 제공하지만, 자체 컨텐츠만 사용가능하다는 점에서 한계를 갖는다. 본 작품에서는 딥러닝 기반의 관절 특징점 검출기 및 특징 추출기를 결합하여 실시간 자세 유사도 측정기를 구현하였다. 목표영상 및 사용자의 관절 위치를 파악함과 동시에 관절 위치 정보에 대한 특징을 추출하여 자세 유사도를 실시간으로 점수화해 사용자에게 제공한다.

  • PDF

변형된 블록 정합을 이용한 이미지 모자이킹 (Image Mosaicing using Modified Block Matching Algorithm)

  • 김대현;윤용인;최종수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2000
  • 본 논문에서는 영상의 화소값으로부터 추출된 유사 특징점(quasi-feature point)을 이용한 이미지 모자이킹 알고리즘을 제안한다. 유사 특징점의 선택은 전역 정합(global matching)의 결과로부터 중첩된 영역을 4개의 부영역(sub-area)으로 분할하고, 각각의 분할된 부 영역에서 국부 분산(local variance)의 크기가 큰 블록을 선정, 이 블록의 중심 화소를 유사 특징점으로 선택한다. 유사 특징점에 대한 정합은 카메라 이동에 따른 왜곡(distortion)과 조명의 변화를 고려한 블록 정합 알고리즘(block matching algorithm)을 이용한다.

  • PDF

특징점 배치도 알고리즘을 이용한 지문 정합 (Fingerprint Matching Using Minutiae Constellation Algorithm)

  • 임재영;장경식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.607-610
    • /
    • 2003
  • 지문 정합을 할 때 특징점 사이의 거리와 각도가 유사한 순서대로 있는가를 비교하는 알고리즘을 제안한다. 한 점에서 가장 가까운 특징점을 찾고 다시 찾은 점에서 가장 가까운 특징점을 찾는데 이러한 세 개의 특징점들 사이의 거리와 끼인 각도를 기본 요소로 하여 이들의 순차를 특징점 배치도로 정의하여 등록지문에도 유사한 순차가 있는지를 검사한다. 정합 시에 특징점 사이의 거리, 각도 순차가 있는가를 검사하기 때문에 중심점을 찾지 않아도 되며 지문의 이동, 회전에 영향을 받지 않는다.

  • PDF

특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증 (Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1057-1066
    • /
    • 2013
  • 손가락 관절문(FKP, finger-knuckle-print)을 이용한 개인 인증은 손가락 관절부에 나타나는 주름의 특징을 이용하는 것으로, 텍스처의 방향 정보가 중요한 특징이 된다. 본 논문에서는 SIFT 알고리즘을 이용하여 특징점들을 추출하고, 벡터 유사도 정합을 통해 FKP를 효과적으로 인증할 수 있는 방법을 제안하다. 벡터는 질의 영상에서 추출한 특징점과 이에 대응되는 참조 영상의 특징점을 연결하는 방향 벡터로 정의된다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 벡터 자체는 국소적인 특징만을 나타내지만, 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교함으로써 전역적인 특징으로 확장되는 장점이 있다. 실험결과 제안하는 방법은 기존의 방향코드를 이용한 다양한 방식에 비하여 우수한 성능을 나타내었다.

이미지 데이터베이스에서의 응답 시간 향상을 위한 그리드 기반 매칭 기법 (A Grid-based Matching Algorithm for Improving Response Time in Image Database)

  • 남윤영;박진규;황인준;위영철;김동윤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (C)
    • /
    • pp.283-286
    • /
    • 2006
  • 내용기반의 이미지 검색방법은 객체의 내부의 정보를 이용한 검색방법으로 색상, 모양, 질감과 같은 특징을 사용한다. 이러한 특징 중에 모양은 검색에 사용될 수 있는 점을 추출하여 유사도 계산에 사용한다. 유사도 계산은 점의 개수가 증가할수록 검색의 응답시간도 함께 증가한다는 문제점이 있다. 본 논문은 응답시간 향상을 위하여 특징점들에 대한 그리드 기반의 유사도 매칭 기법을 제안한다. 그리드 기반의 유사도 매칭 기법은 점들을 그리드로 나누어 검색의 범위를 좁힘으로써 매칭하는 횟수를 줄이는 방법이다. 특징점으로 사용된 점들은 이미지의 선으로부터 MPP(Minimum Perimeter Polygons) 알고리즘으로 추출하였으며, 특징 점들간의 거리값의 합을 유사도로 계산하였다. 실험에서는 400여개의 식물 잎 이미지로부터 점들을 추출하여 검색 시간을 비교하였다.

  • PDF

분할 영역 특성을 이용한 특징점 추적 기법 (Feature Point Tracking using Subregion Features)

  • 이대호;박세제;박영태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.373-375
    • /
    • 2001
  • 본 논문에서는 연속된 프레임에서 특징점을 추출하고 특징점의 유사도를 Hough 공간에 누적하여 정확한 이동을 찾아내는 기법을 제시한다. 특징점은 예지의 시작점, 끝점, 분기점과 굴곡점을 사용한다. 정합을 위하여 특징점 주위의 평균 밝기, 굴곡점의 굴곡각을 이용하며, 물체 주위에 물체보다 특징이 강한 배경에 민감하지 않게 동작하기 위하여 Hough 공간상의 극대값들에 대하여, 분할 영역의 평균과 표준 편차를 비교함으로써 정확한 이동 경로를 산출한다. 제안하는 알고리즘을 실제 영상에 적응한 경우 배경의 특징이 매우 강한 경우 Hough 공간의 최대값을 찾는 기법이 해결할 수 없는 부분도 정확히 추적하는 결과를 보인다.

  • PDF

동일 특징점의 확률분포 모델링을 이용한 지문정합 (A Probabilistic Modeling of Feature Distribution Between Corresponding minutiae in Fingerprint Matching)

  • 전성욱;이응봉;류춘우;김학일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.613-615
    • /
    • 2002
  • 특징점 기반의 지문 정합 시스템은 동일 특징점의 검색을 통하여, 주어진 두 지문의 동일 여부를 결정하는 것을 목적으로 하고 있다. 정합과정의 검색 단계에서 동일 특징점으로 결정된 두 특징점간 거리 및 각도차의 분포를 확률적으로 모델링함으로써, 검색된 동일 특징점의 신뢰도를 높이고자 하였으며 전체적으로 지문 정합시스템의 성능향상을 목적으로 한다. 본 논문에서는 확률기법을 사용한 동일 특징점 유사도 산출 방법과 이를 통한 지문의 동일여부 결정방법을 제시하였으며 구현결과, EER의 경우 2.64%에서 0.78%로 70%의 감소효과를 얻을 수 있었다.

  • PDF

카메라 센서 정보 기반 이미지 클러스터링을 이용한 360 VR 이미지 제작 (360 VR Image Stitching Algorithm using Image Clustering based on Camera Sensor Data)

  • 정우경;한종기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.73-75
    • /
    • 2019
  • 360°VR 영상은 카메라에서 촬영된 여러 영상들을 이어 붙이는 작업인 스티칭(Stitching)을 통하여 만들 수 있다. 스티칭은 영상들을 이어 붙이기 위해 각 영상의 특징점을 추출하는 특징점 추출, 특징점간 유사도를 비교하여 유사한 특징점끼리 매칭시키는 특징점 매칭, 특징점 매칭 과정에서 획득한 호모그래피 매트릭스를 이용한 이미지 와핑, 각 영상 간의 부자연스러운 경계선을 제거하는 블렌딩 과정을 거친다. 고품질의 360°VR 영상을 획득하기 위해서는 영상의 개수를 증가시킬 필요가 있고, 이로 인해 스티칭 과정에서 소요되는 시간이 증가한다. 본 논문에서는 카메라 센서 정보를 이용해 유사한 영상끼리 클러스터링하여, 한번에 스티칭이 진행되는 영상의 수를 감소시키고, 멀티 스레드를 이용하여 각 그룹의 스티칭을 병렬적으로 진행한 뒤, 최종적으로 스티칭하여 최종 360°VR 영상을 획득하는 과정을 제안한다.

  • PDF

우세점을 이용한 유사한 모양 매칭 기법 (Similar Shape Matching Technique Using Interest Points)

  • 김선규;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.477-482
    • /
    • 2001
  • 이미지 데이터베이스에서 특성 객체를 가지고 있는 이미지를 효율적으로 검색하는 각 객체의 모양 특징을 질의 이미지의 질의 객체의 특징과 비교해야 한다. 올바른 모양 비교 기준은 사람이 보기에 같거나 유사하다고 판단하는 방법을 기준으로 삼는다. 본 논문에서는 질의 객체를 가진 이미지의 유사 검색에서 모양 비교의 정확도를 높이기 위한 매칭 기법을 제안한다. 이를 위해 질의 객체와 대상 객체에 비교를 시작할 근사한 우세점을 찾고 올바른 모양 비교를 위한 매칭 알고리즘을 제안한다. 또한 질의 중심의 유사도를 비교하기 위해 유사함수를 설정한다. 유사성 검색을 위해 사용되는 객체의 모양 특징은 객체의 윤곽선상의 점들 중 결정된 지역 특징을 지닌 (거리 ${\gamma}$, 각도$\theta$)의 우세점 집합으로 표현한다.

  • PDF