본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)와 얼굴인식에서 널리 쓰이는 Gabor 기술어를 이용한 얼굴 인식 방법을 소개한다. SURF 기반 영상인식 방법은 특징점을 찾고 해당 특징점에서 기술어를 추출한 후, 정합을 수행한다. 본 논문에서는 SURF 를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴인식 방법을 제안한다. 잘 알려진 ORL 데이터베이스에서의 실험에서 제안한 방법이 기존 SURF 기반의 얼굴 인식 방법에 비해 더 높은 얼굴 인식 성능을 보여줄 뿐 아니라 정합시간을 포함한 처리 속도면에서도 더 우수한 성능을 보였다. 이러한 실험 결과를 통하여 제안하는 방법이 SURF 보다 얼굴 인식에 적합함을 확인할 수 있었다.
본 논문은 스테레오 시각에서 3차원 정보를 얻기 위해 지역적 특징 정보를 이용한 유전 알고리즘 기반의 다해상도 스테레오 영상 정합 방법을 제안하고자 한다. 스테레오 영상에서 대응점을 찾아 변위를 계산하는 문제는 최적화 기법으로 해결할 수 있다. 최적화 문제 해결에 우수한 유전 알고리즘을 이용해 조밀한 변위도를 구하고 정합의 효율성을 위해 계층적 다해상도 구조를 적용하여 영상 피라미드를 만든다. 그리고 변위도의 정확도를 높이기 위해 변위 전파 과정에서 지역적 특징 정보를 추출하여 이용한다. 실험을 통해 제안한 방법이 변위 탐색 시간을 감소시킬 뿐만 아니라 정합의 타당성이 보장됨을 확인하고자 한다.
본 논문에서는 특징점 기반의 포인트 클라우드 정합 알고리즘을 제안한다. 컴퓨터 비전 분야에서 각각 다른 카메라에서 획득한 데이터를 하나의 통합된 데이터로 정합하는 문제에 많은 관심을 두고 있다. 기존의 방법들은 큰 오차를 가지고 있거나 많은 카메라 대수나 고가의 RGB-D 카메라를 필요로 한다. 본 논문에서는 깊이 카메라에서 얻은 깊이 영상과 색상 영상을 이용하고 함수 최적화 알고리즘을 적용해 저가의 RGB-D 카메라 8대를 이용하여 오차가 적은 포인트 클라우드 정합 방법을 제안한다.
수치사진측량에서 공액점을 자동으로 결정하기 위한 영상정합은 가장 핵심적인 주제이며 이를 자동화하기 위한 많은 연구가 진행 중이다 본 연구에서는 영역기반 영상정합에서 영상정합의 정확도를 제어하기 위한 허용상관계수의 설정이 수치사진측량의 정확도에 미치는 영향을 고찰하였다. 이를 위해 영상상관계수 정합법, 영상피라미드 정합법, 특징점 추출에 의한 정합법을 각각 구현하고 각 방법에서 허용상관계수가 수치사진측량의 정확도에 미치는 영향을 비교 분석하였고 최적 허용상관계수를 결정하는 방법을 제시하였다.
본 논문에서는 지능적인 교통감시를 위해 궤적 정합을 이용한 특징 기반의 새로운 차량 추적 시스템을 제안한다. 제안된 차량 추적 시스템의 전체적인 알고리즘은 특징 추출, 특징 추적 및 궤적 정합을 통한 그룹핑의 세 단계로 구성된다. 특징 추출 및 추적 단계에서는 입력된 영상에서 차량으로 추정할 수 있는 부속 정보를 추출하기 위해 꼭지점 추출 영상처리 기법을 적용하여 차량의 특징점으로 추출하고 선형 칼만 필터을 이용하여 특징들을 추적한다. 그룹핑 단계에서는 개별 차량에 소속된 특징점들을 하나의 그룹으로 분류한다. 이때, 특징 기반 추적방식의 문제점인 객체 중첩 문제를 해결하기 위해 특징들의 위치 정보와 궤적 정합을 이용한 새로운 그룹핑 방법을 제시한다 마지막으로, 차량들이 근접하거나 부분 겹침이 일어나는 경우의 교통영상에 적용하여 제안된 추적 시스템의 성능을 보인다.
본 논문은 영상 시퀸스로부터 이미지 모자이킹의 구성을 위한 효율적인 알고리즘을 기술한다. 영상의 기하학적인 특징을 이용하거나 비선형 방정식을 풀었던 기존의 알고리즘과는 달리, 제안한 알고리즘은 4개의 유사특징점을 이용해 영상간 사영 변환식의 8개 파라미터를 직접 계산한다. 본 논문에서 정의된 유사특징점은 영상의 그레이레벨의 분산을 기반으로 하고, 두 영상의 중첩 영역에서만 결정된다. 또한 선택된 4개의 유사특징점에 대한 대응점 검출을 위해 카메라 이동 및 조명 변화에 의한 영상의 변화를 고려한 블록 정합 알고리즘을 적용한다. 제안된 알고리즘은 다양한 영상에 적용하여 그 성능을 평가하였다. 모의 실험 결과는 제안된 알고리즘이 기존의 알고리즘에 비해 계산량을 감소시키면서, 정확한 사영 변환식을 유도하여 모자이킹 영상을 구성하는 것을 보여주고 있다.
최근 3차원 공간정보에 대한 수요가 증가함에 따라 신속하고 정확한 데이터 구축의 중요성이 증대되어 왔다. 정밀한 3차원 데이터 구축이 가능한 LiDAR (Light Detection and Ranging) 데이터를 기준으로 UAV (Unmanned Aerial Vehicle) 영상을 정합하기 위한 연구가 다수 수행되어 왔으나, MMS (Mobile Mapping System)로부터 취득된 LiDAR 점군데이터의 반사강도 영상을 활용한 연구는 미흡한 실정이다. 따라서 본 연구에서는 MMS로부터 취득된 LiDAR 점군데이터를 반사영상으로 변환한 데이터와 UAV 영상 데이터의 정합을 위해 9가지의 특징점 기반매칭 기법을 비교·분석하였다. 분석 결과 SIFT (Scale Invariant Feature Transform) 기법을 적용하였을 때 안정적으로 높은 매칭 정확도를 확보할 수 있었으며, 다양한 도로 환경에서도 충분한 정합점을 추출할 수 있었다. 정합 정확도 분석 결과 SIFT 알고리즘을 적용한 경우 중복도가 낮으며 동일한 패턴이 반복되는 경우를 제외하고는 약 10픽셀 수준으로 정확도를 확보할 수 있었으며, UAV 영상 촬영 당시 UAV 자세에 따른 왜곡이 포함되어 있음을 감안할 때 합리적인 결과라고 할 수 있다. 따라서 본 연구의 분석 결과는 향후 LiDAR 점군데이터와 UAV 영상의 3차원 정합을 위한 기초연구로 활용될 수 있을 것으로 기대된다.
일반적으로 상용화되고 있는 고해상도 위성영상에는 좌표가 부여되어 있지만, 촬영 당시 센서의 자세나 지표면 특성 등에 따라서 영상 간의 지역적인 위치차이가 발생한다. 따라서 좌표를 일치시켜주는 영상 간 상호등록 과정이 필수적으로 적용되어야 한다. 하지만 영상 내에 구름이 분포할 경우 두 영상 간의 정합쌍을 추출하는데 어려움을 주며, 오정합쌍을 다수 추출하는 경향을 보인다. 이에 본 연구에서는 구름이 포함된 고해상도 KOMPSAT-2 영상간의 자동 기하보정을 수행하기 위한 방법론을 제안한다. 대표적인 특징기반 정합쌍 추출 기법인 SIFT 기법을 이용하였고, 기준영상의 특징점을 기준으로 원형 버퍼를 생성하여, 오직 버퍼 내에 존재하는 대상영상의 특징점만을 후보정합쌍으로 선정하여 정합률을 높이고자 하였다. 제안 기법을 구름이 포함된 다양한 실험지역에 적용한 결과, SIFT 기법에 비해 높은 정합률을 보였고, 상호등록 정확도를 향상시킴을 확인할 수 있었다.
본 논문에서는 다양한 변이 추정 방식 중 영역기반(Area-based) 알고리듬과 특정기반(Feature-based) 알고리듬을 결합한 하이브리드(Hybrid) 변이추정 알고리듬을 제안한다. 제안하는 알고리듬은 Features from Accelerated Segment Test(FAST) 코너 점 추출기[2]를 이용하여 좌, 우 영상 각각의 특징 점을 추출한 후, 특징 점들의 정보를 이용한 스테레오 정함을 통해 신뢰도 높은 초기 변이지도(Disparity map)를 생생하게 된다. 그러나 생성된 초기 변이지도는 조밀하지 못하므로, 조밀한 변이 지도를 획득하기 위해 특징점이 추출된 영역에 대해서는 추정된 초기 변이 값을 이웃 픽셀과의 색 유사도를 고려하여 전파시키고 특징 점이 추출되지 않은 영역에 대해서는 이진 윈도우(Binary window)를 활용한 영역기반 변이추정 알고리듬[1]을 이용하여 변이 값을 추정한다. 이를 통해, 제안 알고리듬은 특징 기반 알고리듬에서 발생할 수 있는 보간법 문제를 해결함과 동시에 신뢰도가 높은 초기 변이지도를 사용함으로써, 영역 기반 알고리듬의 정합 오차를 줄여 신뢰도 높은 변이지도를 생생할 수 있다. 실험 결과 추정된 초기 변이지도는 ground truth와 비교 시 약 99%이상의 정확도를 보이며, 특징 점이 추출된 영역에서 기존의 영역기반 알고리듬보다 더 정확한 변이 값이 추정되었음을 확인하였다.
본 논문에서는 입체영상을 시청할 때 흔히 발생할 수 있는 시각 피로를 최소화하기 위한 시차 보정 기술을 제안한다. 시각 피로는 3차원 TV의 상용화에 있어 반드시 풀어야 할 문제이다. 본 논문에서 제안하는 시차 보정 기술은 좌, 우 입체카메라의 기하학적 분석을 통하여 영상의 깊이감을 조정하는 수평시차 보정과 특징 정합 기반의 수직시차 보정으로 구성된다. 기존의 시차 보정은 주로 입체영상 카메라의 기하적 관계를 캘리브레이션(calibration) 과정을 거쳐 구하고 그 결과값을 이용하였다. 그러나 캘리브레이션의 오류로 인한 시차의 오차가 여전히 발생하는 문제가 있었다. 본 연구에서는 수평시차는 입체카메라의 캘리브레이션 정보를 사용하는 반면 수직시차는 특징점 정합 기반의 보정 알고리즘을 사용하여 수직시차의 오차를 최소화하였다. 유사한 특징점 정합 기반의 보정 알고리즘과의 비교를 통하여 제안 알고리즘의 성능을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.