• Title/Summary/Keyword: 특징점매칭

Search Result 232, Processing Time 0.024 seconds

SURF algorithm to improve Correspondence Point using Geometric Features (기하학적 특징을 이용한 SURF 알고리즘의 대응점 개선)

  • Kim, Ji-Hyun;Koo, Kyung-Mo;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.43-46
    • /
    • 2012
  • 컴퓨터 비전을 이용한 다양한 응용 분야에 있어서, 특징점을 이용한 응용 분야가 많이 이루어지고 있다. 그 중에 Global feature는 표현의 위험성과 부정확성으로 인해서 많이 사용되고 있지 않으며, Local feature를 이용한 연구가 주로 이루고 있다. 그 중에 SURF(Speeded-Up Robust Features) 알고리즘은 다수의 영상에서 같은 물리적 위치에 있는 동일한 특징점을 찾아서 매칭하는 방법으로 널리 알려진 특징점 매칭 알고리즘이다. 하지만 SURF 알고리즘을 이용하여 특징점을 매칭하여 정합 쌍을 구하였을 때 매칭되는 특징점들의 정확도가 떨어지는 단점이 있다. 본 논문에서는 특징점 매칭 알고리즘인 SURF를 사용하여 대응되는 특징점들을 들로네 삼각형의 기하학적 특징을 이용하여 정확도가 높은 특징점을 분류하여 SURF 알고리즘의 매칭되는 대응점들의 정확도를 높이는 방법을 제안한다.

  • PDF

FAST and BRIEF based Real-Time Feature Matching Algorithms (FAST와 BRIEF 기반의 실시간 특징점 매칭 알고리즘)

  • Kim, Seungryong;Yoo, Hunjae;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.1-4
    • /
    • 2012
  • 영상 매칭 기술은 컴퓨터 비전 분야에서 다양하게 응용될 수 있는 기초적인 기술 중에 하나이다. 대표적인 영상 매칭 기술인 SIFT나 SURF는 강인한 영상 매칭 성능을 나타내지만 계산량이 방대하여 실시간 기술에 사용될 수 없는 문제점을 가진다. 최근에 ORB나 BRISK는 FAST 특징점 검출기와 BRIEF 특징점 표현자를 조합하여 실시간 영상 매칭을 가능하게 하면서 기존의 영상 매칭 기술과 견줄만한 성능을 나타내었다. 본 논문에서는 FAST와 BRIEF를 수정하여 영상 왜곡에 강인하면서 실시간으로 매칭을 수행할 수 있는 영상 매칭 알고리즘을 제안한다. 노이즈에 강인하면서 스케일 변화를 고려하기 위하여 특징점 후보 영역을 제한하고 스케일 공간을 생성하여 특징점을 검출한다. 또한 영상의 회전 변화에 강인한 영상 매칭을 가능하게 하기 위하여 주변 픽셀 패턴의 Gradient로 특징점 방향을 결정하여 픽셀 밝기 값 비교로 이진 특징점 표현자를 생성한다. 제안하는 영상 매칭 알고리즘은 적은 계산량으로 기존의 알고리즘보다 우수한 영상 매칭 성능을 나타낸다. 특별히 노이즈가 존재하는 영상의 매칭에서 노이즈의 영향에 강인한 매칭 성능을 보여준다.

  • PDF

A Study on the Fingerprint Recognition Using Fingerprint Orientation and Features. (방향성과 특징점을 이용한 지문 인식 시스템에 관한 연구)

  • 김인식;권욱주;박건주;김정규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.219-223
    • /
    • 2004
  • 본 논문에서는 여러 생체 인식 시스템 중 지문 인식에 관한 연구를 기술한다 지문 입력장치를 통해 입력 받은 영상을 이용하여 개인의 식별을 위해 방향성과 특징점 정보를 이용, 매칭을 실시한다. 지문의 매칭은 1 차로 소벨 마스크와 창틀 마스크를 이용한 방향성 매칭과 2 차로 특징점 정보를 이용한 매칭 2 단계로 이루어 진다 방향성 정보를 이용한 매칭 방법에서는 가장 널리 알려진 소벨 마스크 보다 창틀 마스크가 더 정확한 것으로 판별 되었으며, 특징점 정보를 이용한 알고리즘에서는 상당한 의사 특징점을 제거 할 수 있었다 신뢰할 수 있는 방향성 검출 알고리즘과 특징점을 검출하기 위한 연구를 하였으며, 지문영상의 특징점으로는 끝점과 분기점을 사용하였다.

  • PDF

DB-based Feature Point Matching for Accurate and Efficient Obstacle Recognition in AR Environment (AR환경에서 정확하고 효율적인 장애물 인지를 위한 DB기반의 특징점 매칭)

  • Park, Jungwoo;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.377-380
    • /
    • 2022
  • 본 논문에서는 모바일 기반 AR 환경에서 RGB카메라로부터 얻은 영상 분석과 DB 기반의 특징점(Feature point) 매칭을 통하여 보다 정확하게 위험 상황을 알려줄 수 있는 프레임워크를 제안한다. 본 논문에서는 RANSAC(Random sample consensus)기반의 다중 평면 방식을 이용한 특징점을 추출하고 분석하여 영상에 존재하는 장애물을 감지한다. RGB카메라로 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징점 검출이 부정확하고, 조명이나 자연광 또는 날씨에 영향을 많이 받기 때문에 어둡거나 흐린 날씨에서는 장애물 검출이 어려워진다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징점 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 특징점 매칭을 이용하려면 우선 영상에서 특징점이 안정적으로 추출될 수 있는 환경인, 조명이나 자연광이 충분한 환경에서 감지된 장애물 정보를 데이터베이스화 하여 저장한다. 조명이 충분하지 않은 환경에서 사용자가 사전에 저장된 지역에 근접할 경우 특징점 분석이 아닌 DB 기반 특징점 매칭을 통해 위험 요소를 감지한다. 우리의 방법은 조명의 여부의 관계없이 효과적으로 위험을 감지할 수 있기 때문에 다양한 분야에 활용될 수 있다.

  • PDF

A Scale-Space based on Bilateral Filtering for Robust Feature Detection in SIFT (SIFT 알고리즘의 강인한 특징점 검출을 위한 양방향 필터 기반 스케일 공간)

  • Kim, Seungryong;Yoo, Hunjae;Son, Jongin;Oh, Changbum;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.79-82
    • /
    • 2012
  • 컴퓨터 비전에서 영상 매칭 기술은 다양한 분야에 응용될 수 있는 기초적인 기술 중에 하나이다. 강인한 영상 매칭을 위해서는 정확하고 독특한 특징점을 검출하는 과정이 중요하다. 기존의 SIFT나 SURF 등 영상 매칭 알고리즘은 등방성 가우시안 필터링을 사용한 스케일 공간을 생성하여 특징점을 검출한다. 이러한 기존의 특징점 검출 방식은 스케일 공간에서 영상의 경계선을 모호하게 만들어 정확한 특징점 검출을 어렵게 만들고 영상 매칭의 성능을 떨어뜨리는 문제점을 가지고 있다. 본 논문에서는 SIFT 알고리즘의 강인한 특징점 검출을 위하여 양방향 필터링을 사용하여 스케일 공간 생성을 제안한다. 이러한 스케일 공간 생성 방식은 스케일 공간에서 영상의 경계선을 보존해 줌으로서 강인한 특징점 검출을 가능하게 하여 영상 매칭 성능을 향상시킨다. 특히 왜곡이 존재하는 영상들의 매칭에서 제안하는 특징점 검출 방법이 적용된 SIFT 알고리즘은 기존의 SIFT 알고리즘보다 우수한 영상 매칭 결과를 보여준다.

  • PDF

Feature Point Filtering Using Integral Image (적분영상을 사용한 특징점 필터링)

  • Bae, Byeong-Jo;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.605-608
    • /
    • 2010
  • 두 영상에서 특징점을 추적하기 위하여 특징점을 중심으로 $N{\times}N$ 크기 윈도우 패치의 SSD 값을 비교하는 방법을 사용한다. 그러나 영상에서 다수의 특징점이 추출되어 매칭을 시도하는 경우 많은 처리 시간을 필요로 한다. 처리 시간의 증가는 실시간 처리를 어렵게 만든다. 이러한 문제를 해결하기 위하여 적분 영상(integral image)을 사용하여 매칭 가능성이 높은 특징점을 필터링하여 SSD 매칭의 처리 시간을 단축시키는 방법을 제안한다. 본 논문에서 제안한 적분 영상을 사용한 특징점 필터링을 적용한 방법과 기존의 SSD 매칭 방법을 비교 실험하여 특징점 매칭의 처리 시간을 절감하는 결과를 얻을 수 있었다.

The Vulnerability Evaluation of Matching Algorithm and Minutiae Detection for Fingerprint Recognition (지문 인식을 위한 특징점 추출 및 매칭 알고리즘 취약성 평가)

  • 최진호;김창수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.206-209
    • /
    • 2003
  • 생체인식 기술 중에서 지문-기반 인식은 많은 어플리케이션에 성공적으로 이용되어온 가장 오래된 방법이지만 지문 인식 시스템이 클라이언트/서버 형식으로 운영될 경우 지문 이미지를 획득하여 특징점을 추출하고 이를 서버로 전송하는 경우 보안 취약성이 존재한다. 취약성에는 여러 가지가 있을 수 있지만 본 연구와 관련된 부분은 지문 이미지 획득과 특징점 추출과정 그리고 추출된 특징점의 매칭 과정에 초점을 맞추고 있다. 본 논문에서는 지문 이미지의 영상 처리를 통한 특징점 추출 및 추출된 특징점을 변조하는 도구를 구현하여 기존의 지문인식 시스템들에 대한 매칭 알고리즘 취약성 평가를 검증할 수 있는 평가 도구를 설계 및 구현하였다. 매칭 알고리즘 취약성 평가는 평가를 위해 구현된 지문 인식 시스템에서 특징점을 추출하고, 추출된 특징점 중 단점을 이용하여 선택된 이미지 영역을 변조한다. 변조된 이미지는 평가 대상 시스템에서 재입력하여 평가를 수행한다.

  • PDF

3D Object tracking with reduced jittering (떨림 현상이 완화된 3차원 객체 추적)

  • Kang, Minseok;Park, Jungsik;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.185-188
    • /
    • 2015
  • 미리 저장된 객체의 3차원 특징점(Feature point) 좌표와 카메라 영상의 2차원 특징점 좌표를 매칭(Matching)하여 객체를 추적하는 방식의 경우, 카메라의 시점이 변할 때 특징점에서 발생되는 원근 효과(Perspective effect)가 반영되지 못하여 특징점 매칭 오류가 발생한다. 따라서 특징점에서 발생하는 원근 효과를 반영하여 정확한 카메라 포즈를 추정하기 위해 이전 프레임(Frame)의 카메라 포즈(Camera Pose)에 맞추어 텍스쳐가 포함 된 3차원 객체의 모델을 렌더링 하여 원근 효과를 적용한 후, 현재 카메라 영상과 특징점 매칭하여 프레임 사이의 카메라 움직임을 구하여 객체를 추적한다. 더 나아가 본 논문에서는 특징점 매칭에서 발생하는 작은 오류들로 인한 미세한 카메라 움직임은 2단계의 임계치(Threshold)를 적용하여 떨림 현상으로 간주하여 떨림 현상이 제거된 객체 추적을 수행한다. 매 프레임마다 카메라 포즈에 맞춘 추적 객체를 렌더링 하기 때문에 떨림 현상으로 간주되어 제거된 카메라 움직임은 누적되지 않고, 추적 오류도 발생시키지 않는다.

  • PDF

Fingerprint Recognition using Gabor Filter (Gabor 필터를 이용한 지문 인식)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.653-662
    • /
    • 2002
  • Fingerprint recognition is a task to find a matching pattern in a database for a specific persons fingerprint. To accomplish this task, preprocessing, classification, and matching steps are taken for a large-scale fingerprint database but only the matching step is taken without classification for a small-scale database. The primary matching method is based on minutiae (ridge ending point, bifurcation). This matching method, however, requires a very complex computation to extract minutiae and match minutiae-to-minutiae accurately due to translation, rotation, nonlinear deformation of fingerprint and occurrence of spurious minutiae. In addition, this method requires a laborious preprocessing step in order to improve the quality of fingerprint Images. This paper proposes a new simple method to eliminate these problems. With this method, Gabor variance is used instead of minutiae for fingerprint recognition. The Gabor variance is computed from Gabor features that result from filtering a fingerprint image through Gabor filter. In this paper, this method is described and its test result is shown, demonstrating the potential of using this new method for fingerprint recognition.

Image Registration Using Repetitive Patterns (반복 패턴을 이용한 영상 정합)

  • Ha, Seong Jong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.306-308
    • /
    • 2012
  • 본 논문은 특징 클러스터에 대한 묘사에 기반한 새로운 특징 기반 영상 정합을 제안한다. 추출되는 특징들을 모두 동등하게 처리하는 기존 방법은 반복 패턴이 존재하는 영상에서는 매칭이 종종 실패하거나 적은 일치점만을 제공한다. 그 이유는 서로 닮아 있는 반복 패턴들로 인해 기하학적으로 일관되지 않은 매칭점들이 발생하거나 거리 비율 테스트를 통과하지 못하기 때문이다. 이에 반해 제안하는 방법은 더 많은 수의 일치점들을 발견할 수 있다. 이를 위해 제안하는 방법은 먼저 추출된 특징들을 반복 패턴으로부터 온 것들과 그렇지 않은 두드러진 특징들로 분리한다. 그런 후 support vector data description을 이용하여 각 반복 패턴들을 묘사한다. 동일하지 않은 영상이 매칭되는 경우를 제거하고 기하학적으로 일관된 일치점들을 제공하기 위해 매칭된 쌍에 대한 기하학적인 단서가 추가된다. 실험을 통해 제안하는 방법은 반복 패턴으로부터 추출된 특징들에 대해 일치점을 제공함으로써 더 많은 수의 일치점을 제공하게 되어 더 정확한 영상 정합을 수행한다는 것을 증명하였다.

  • PDF