Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.137-140
/
2003
캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작방법으로는, 입력 이미지 좌표의 통계적인 차이값을 이용하는 PICASSO System 방법[1], 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지를 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫번째 단계에서는 영상에서 얼굴을 검출하고 두번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표값으로 추출한다. 세번째 단계에서는 전 단계에서 얻은 좌표값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 둥의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.
Proceedings of the Korean Institute of Surface Engineering Conference
/
2018.06a
/
pp.43.2-43.2
/
2018
송전 및 배전선 선로에 사용되는 핵심 부품인 ACSR (Aluminum Conductor Steel Reinforced, 강심 알루미늄 연선) cable은 우수한 기계적 성질, 가벼운 중량, 내부식성 특징을 가지고 있어 송전 및 배전선 선로에 핵심 부품으로 사용된다. 하지만, 국내외 혹한 다설 지역에 설치된 ACSR cable에서 빙설해로 인한 단락 또는 지락 사고가 지속적으로 발생하고 있다. 빙설해에 의한 송전선로의 고장은 급격한 전압 강하로 인해 전기 품질에 큰 영향을 주어 민원제기의 주요 원인이 되며, 고장의 파급효과가 국지적으로 발생하지 않고 광범위하게 발생하는 특징이 있기 때문에 이에 대한 대응이 필요한 실정이다. 이러한 문제를 해결하기 위해 ACSR cable의 주 소재인 알루미늄에 대한 판상(Plate) 결빙강도 파악 및 결빙방지 소재개발 연구가 국내외에서 활발히 진행 중이나, 실제 원형의 전선다발이 나선형으로 감겨있는 구조의 ACSR cable 결빙 접합강도를 시험을 통해서 명확히 제시한 연구결과는 아직 보고된 바 없다. 본 연구에서는 실제 송전용 ACSR cable을 대상으로 얼음 간의 주 전단 응력, 파단에너지 등의 결빙특성을 정량적으로 측정할 수 있는 3D 스캔을 활용한 결빙특성 평가시험기를 개발하고, 345kV급 ACSR cable에 대한 결빙특성을 평가결과를 제시하였다. 또한 ACSR cable에 현재 상용화되고 있는 결빙방지 코팅소재를 적용함으로써 코팅소재의 적합성을 ARF(Adhesion reduction factor) 지표를 통해서 비교 평가한 결과를 포함한다.
In this paper, we present a method for performance enhancement of the marker detection system by using SVM(Support Vector Machine) and LDA(Linear Discriminant Analysis). It converts the input image to a binary image and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds quadrangle by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted quadrangle into exact squares by using the warping technique and scale transformation. It extracts feature vectors from the square image by using principal component analysis. It then checks if the square image is a marker image or a non-marker image by using a SVM classifier. After that, it computes feature vectors by using LDA for the extracted marker images. And it calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the proposed method achieves enhancement of recognition rate with smaller feature vectors by using LDA and it can decrease false detection errors by using SVM.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.49
no.4
/
pp.90-101
/
2012
The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.679-685
/
2011
This paper presents an algorithm identifying devices that generate observed mixed signals that are collected at main power-supply line. The proposed algorithm, which is necessary for low cost electric power monitoring system at appliance-level, that is non-intrusive load monitoring system, divides incoming mixed signal into multiple time intervals, calculating difference-signals between consecutive time interval, and identifies which device is operating at the time interval by analysing the difference-signals. Since the features of one device can remain when the time interval is short enough and the features are independent and additive, well-known classification algorithms can be used to classify the difference-signals with features of N individual devices, otherwise $2^N$ features might be necessary. The proposed algorithm was verified using data mixed in a laboratory with individual devices's data collected from field. When maximum 4 devices operate or stop sequentially and when features satisfy the requirements of proposed algorithm, the proposed algorithm resulted nearly 100% success rate under the constrained test condition. In order to apply the proposed algorithm in real world, the number devices shall increase, the time interval shall be smaller and the pattern of mixture shall be more diverse. However we can expect, if features used follow guidelines of proposed algorithm, future system could have certain level of performance without the guideline.
Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
The Journal of the Korea Contents Association
/
v.7
no.2
/
pp.1-10
/
2007
In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.514-517
/
2017
In solar photovoltaic systems, power generation is greatly affected by the weather conditions, so it is essential to predict solar energy for stable load operation. Therefore, data on weather conditions are needed as inputs to machine learning algorithms for solar energy prediction. In this paper, we use 15 kinds of weather data such as the precipitation accumulated during the 3 hours of the surface, upward and downward longwave radiation average, upward and downward shortwave radiation average, the temperature during the past 3 hours at 2 m above from the ground and temperature from the ground surface as input data to the algorithm. We analyzed the statistical characteristics and correlations of weather data and extracted the downward and upward shortwave radiation averages as a major elements of a feature vector with high correlation of 70% or more with solar energy.
In this paper, we propose a hybrid image processing and deep learning-based method for detecting the presence of power lines in infrared images. Deep learning-based methods can learn feature vectors from a large number of data without much effort, resulting in outstanding performances in various fields. However, it is difficult to apply human intuition to the deep learning-based methods while image processing techniques can be used to apply human intuition. Based on these, we propose a method that exploits both advantages to detect the existence of power lines in infrared images. To this end, five methods have been applied and compared to find the most effective image processing technique for detecting the presence of power lines. As a result, the proposed method achieves 99.48% of accuracy which is higher than those of methods based on either image processing or deep learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.