• Title/Summary/Keyword: 특징벡터선택

Search Result 169, Processing Time 0.024 seconds

Motion Analysis Using Competitive Learning Neural Network and Fuzzy Reasoning (경쟁학습 신경망과 퍼지추론법을 이용한 움직임 분석)

  • 이주한;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.117-127
    • /
    • 1995
  • In this paper, we suggest a motion analysis method using ART-I1 competitive learning neural network and fuzzy reasoning by matching the same objects through the consecutive image sequence. we use the size and mean intensity of the region obtained from image segmentation for the region matching by the region and use a ART-I1 competitive learning neural network wh~ch has a learning ability to reflect the topology of the input patterns in order to select characteristic points to describe the shape of a region. Motion vectors for each regions are obtained by matching selected characteristic points. However, the two dimensional image, the projection of the the three dimensional real world, produces fuzziness in motion analysis due to its incompleteness by nature and the error from image segmentation used for extracting information about objects. Therefore, the belief degrees for each regions are calculated using fuzzy reasoning to l-nanipulate uncertainty in motion estimation.

  • PDF

EEG based Vowel Feature Extraction for Speech Recognition System using International Phonetic Alphabet (EEG기반 언어 인식 시스템을 위한 국제음성기호를 이용한 모음 특징 추출 연구)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The researchs using brain-computer interface, the new interface system which connect human to macine, have been maded to implement the user-assistance devices for control of wheelchairs or input the characters. In recent researches, there are several trials to implement the speech recognitions system based on the brain wave and attempt to silent communication. In this paper, we studied how to extract features of vowel based on international phonetic alphabet (IPA), as a foundation step for implementing of speech recognition system based on electroencephalogram (EEG). We conducted the 2 step experiments with three healthy male subjects, and first step was speaking imagery with single vowel and second step was imagery with successive two vowels. We selected 32 channels, which include frontal lobe related to thinking and temporal lobe related to speech function, among acquired 64 channels. Eigen value of the signal was used for feature vector and support vector machine (SVM) was used for classification. As a result of first step, we should use over than 10th order of feature vector to analyze the EEG signal of speech and if we used 11th order feature vector, the highest average classification rate was 95.63 % in classification between /a/ and /o/, the lowest average classification rate was 86.85 % with /a/ and /u/. In the second step of the experiments, we studied the difference of speech imaginary signals between single and successive two vowels.

Mesh Editing Using the Motion Feature Vectors (운동 특성 벡터에 기반한 메쉬 에디팅 기법)

  • Lee, Soon-Young;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2008
  • In this paper, we proposed a new mesh editing algorithm based on the motion between two sample meshes. First, the motion vectors are defined as the derivation vector of the corresponding vertices on the sample meshes. Then, the motion feature vectors are extracted between the motion vectors. The motion feature vectors represent the similarity of the vertex motion in a local mesh surface. When a mesh structure is forced by an external motion of anchor vertices, the deformed mesh geometry is obtained by minimizing the cost function with preserving the motion feature vectors. Simulation results demonstrated that the proposed algorithm yields visually pleasing editing results.

Relational Discriminant Analysis Using Prototype Reduction Schemes and Mahalanobis Distances (Prototype Reduction Schemes와 Mahalanobis 거리를 이용한 Relational Discriminant Analysis)

  • Kim Sang-Woon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.9-16
    • /
    • 2006
  • RDA(Relational Discriminant Analysis) is a way of finding classifiers based on the dissimilarity measures among the prototypes extracted from feature vectors instead of the feature vectors themselves. Therefore, the accuracy of the RDA classifier is dependent on the methods of selecting prototypes and measuring proximities. In this paper we propose to utilize PRS(Prototype Reduction Schemes) and Mahalanobis distances to devise a method of increasing classification accuracies. Our experimental results demonstrate that the proposed mechanism increases the classification accuracy compared with the conventional approaches for samples involving real-life data sets as well as artificial data sets.

Statistical Image Feature Based Block Motion Estimation for Video Sequences (비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.

  • PDF

The Design of Feature Selecting Algorithm for Sleep Stage Analysis (수면단계 분석을 위한 특징 선택 알고리즘 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.207-216
    • /
    • 2013
  • The aim of this study is to design a classifier for sleep stage analysis and select important feature set which shows sleep stage well based on physiological signals during sleep. Sleep has a significant effect on the quality of human life. When people undergo lack of sleep or sleep-related disease, they are likely to reduced concentration and cognitive impairment affects, etc. Therefore, there are a lot of research to analyze sleep stage. In this study, after acquisition physiological signals during sleep, we do pre-processing such as filtering for extracting features. The features are used input for the new combination algorithm using genetic algorithm(GA) and neural networks(NN). The algorithm selects features which have high weights to classify sleep stage. As the result of this study, accuracy of the algorithm is up to 90.26% with electroencephalography(EEG) signal and electrocardiography(ECG) signal, and selecting features are alpha and delta frequency band power of EEG signal and standard deviation of all normal RR intervals(SDNN) of ECG signal. We checked the selected features are well shown that they have important information to classify sleep stage as doing repeating the algorithm. This research could use for not only diagnose disease related to sleep but also make a guideline of sleep stage analysis.

기계학습 및 딥러닝 기술동향

  • Mun, Seong-Eun;Jang, Su-Beom;Lee, Jeong-Hyeok;Lee, Jong-Seok
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.

Object VR-based Virtual Textile Wearing System Using Textile Texture Mapping (직물 텍스쳐 매핑을 이용한 객체 VR 기반 가상 직물 착용 시스템)

  • Kwak, No-Yoon
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.239-247
    • /
    • 2012
  • This paper is related to an Object VR-based virtual textile wearing system carrying out textile texture mapping based on viewpoint vector estimation and intensity difference map. The proposed system is characterized as capable of virtually wearing a new textile pattern selected by the user to the clothing shape section segmented from multi-view 2D images of clothes model for Object VR(Object Virtual Reality), and three-dimensionally viewing its virtual wearing appearance at multi-view points of the object. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern with holding the properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works.

New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification (음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘)

  • Choi, Tack-Sung;Moon, Sun-Kook;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.111-118
    • /
    • 2008
  • In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.

Enhancement of Speech/Music Classification for 3GPP2 SMV Codec Employing Discriminative Weight Training (변별적 가중치 학습을 이용한 3GPP2 SVM의 실시간 음성/음악 분류 성능 향상)

  • Kang, Sang-Ick;Chang, Joon-Hyuk;Lee, Seong-Ro
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.319-324
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the discriminative weight training which is based on the minimum classification error (MCE) algorithm. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then proposed the speech/music decision rule is expressed as the geometric mean of optimally weighted features which are selected from the SMV. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.