• Title/Summary/Keyword: 특징벡터선택

Search Result 169, Processing Time 0.026 seconds

A Study on the Visual Speech Recognition based on the Variations of Lip Shapes (입모양 변화에 의한 영상음성 인식에 관한 연구)

  • 이철우;계영철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.188-191
    • /
    • 2001
  • 본 논문에서는 화자의 입모양의 변화를 분석하여 발음된 음성을 인식하는 방법에 관하여 연구하였다. 입모양 변화를 나타내는 특징벡터의 서로 다른 선택이 인식성능에 미치는 영향을 비교 분석하였다. 특징벡터로서는 ASM(Active Shape Model) 파라메터와 Acticulatory 파라메터를 특별히 선택하여 인식성능을 비교하였다. 모의실험 결과, Articulatory 파라메터를 사용하는 것이 인식성능도 더 우수하고 계산량도 더 적음을 확인할 수 있었다.

A Method of Detecting Boiler Tube Leakage using a Genetic Algorithm and Support Vector Machines (유전알고리즘과 서포트 벡터 머신을 이용한 보일러 튜브 누설 감지 방법)

  • Kim, Young-Hun;Kim, Jae-Young;Jeong, In-kyu;Kim, Yu-Hyun;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.55-56
    • /
    • 2018
  • 화력발전소의 중요 구성품인 보일러 튜브의 예기치 못한 누설 사고로 인해 수억원에 해당하는 손실이 발생하고 있다. 본 논문에서는 보일러 튜브의 누설 감지를 위해 유전 알고리즘을 이용하여 추출 가능한 특징들 중 누수 감지에 유용한 특징들을 선택하고, 선택된 특징으로 서포트 벡터 머신을 이용하여 보일러 튜브의 누설 감지하는 방법을 제안한다. 이는 뛰어난 성능을 보였으며, 향후 본 기술을 이용하면 발전소의 손실 예방에 크게 도움이 될 것으로 기대된다.

  • PDF

Feature Combination and Selection Using Genetic Algorithm for Character Recognition (유전 알고리즘을 이용한 특징 결합과 선택)

  • Lee Jin-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.152-158
    • /
    • 2005
  • By using a combination of different feature sets extracted from input character patterns, we can improve the character recognition system performance. To reduce the dimensionality of the combined feature vector, we conduct the feature selection. This paper proposes a general framework for the feature combination and selection for character recognition problems. It also presents a specific design for the handwritten numeral recognition. Tn the design, DDD and AGD feature sets are extracted from handwritten numeral patterns, and a genetic algorithm is used for the feature selection. Experimental result showed a significant accuracy improvement by about 0.7% for the CENPARMI handwrittennumeral database.

  • PDF

Neural network based Object segmentation and optical flow estimation using spatial feature (공간적 특징을 이용한 신경 회로망 기반 객체 분할 및 움직임 예측)

  • 김형진;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.837-840
    • /
    • 2000
  • 동영상에서 움직이는 객체 분할 및 모션 예측을 동시에 수행할 수 있는 연구는 다양한 방법으로 시도 되어 왔다. 실제 이미지를 서로 다른 움직임이나 서로 다른 공간적인 특정 영역으로 분리 될 수 있다고 가정 한다면 복수의 객체 또는 객체의 움직임으로 표현 할 수 있다. 객체 분할 측면에서 볼 때 효율적인 분할을 위해서는 특징 입력 벡터의 선택이 중요한 변수로 작용한다. 본 연구에서는 정밀한 객체 분할을 위해 밝기, 질감(Texture) 정보와 같은 정지영상의 특징 입력 벡터와 움직임 벡터 같은 동영상의 특징 입력 벡터를 동시에 사용한다. 분리된 객체는 각각의 클래스를 구성하게 되고 이를 위한 클래스 분류기로서 Median Radial Basis 신경 회로망을 사용한다. 객체 분할과 움직임 예측을 위해서 확률적 방법을 통한 에너지 함수를 구하고 비용함수를 도입한다. 신경 회로망의 각 Basis 함수는 영상의 특정한 영역에서 활성화되며 객체의 분류를 위해 신경 회로망 출력으로 가중치의 합으로서 나타나게 된다.

  • PDF

Occlusive Face Recognition using the Selective Subspace Projection Method (선택적 부공간 투영 방법을 사용한 가려진 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • In this paper, we propose a new selective subspace projection method in order to recognize the occlusive face image effectively. The conventional subspace projection method is project to basis image using a full image of face. The face recognition rate has reduced because the face characteristic is easy to be distorted by occlusion. To overcome this problem, the proposed method first decide to occlusion. If it hasn't an occlusion, we get the feature vectors with total basis projection using the conventional subspace projection method. If it has an occlusion, we get one with partial basis projection. We get better recognition rate than conventional PCA and NMF using AR face database with occlusive face images.

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.

Face Identification using Support Vector Machines with Features Set extracted by Genetic Algorithm (GA에 의한 특징 선택에 따른 Support Vector Machines을 이용한 얼굴 인식)

  • 이경희;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.458-460
    • /
    • 2000
  • 본 논문에서는 유전자 알고리즘(GA)과 Support Vector Machine(SVM)을 결합하여 사용한 얼굴 인식 시스템을 제안한다. 기존의 SVM을 이용한 얼굴 인식 연구에서는 얼굴 전체 영상을 SVM의 입력벡터로 사용하는데 반해, 본 연구에서는 GA를 이용하여 얼굴 영상 중에서 개인별로 식별 능력이 우수한 특징들만을 선택하여 이를 SVM의 입력벡터로 사용한다. 조명, 표정, 안경 착용 등 다양한 변화가 있는 Yale 얼굴 데이터베이스를 사용하여 실험한 결과, 얼굴 전체 영상을 사용한 경우보다 더 좋은 인식률을 보였다. 또한 제안된 방법에 의한 얼굴 인식 시스템은 각 개인별로 식별력이 우수한 특징들만을 저장하므로, 얼굴인식 시스템을 구성하기 위해 저장될 정보의 양이 현저하게 감소하게 된다.

  • PDF

Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning (SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data sets. Variable selection of feature pattern aims at differential expressed gene set that is significantly relevant for a special task. This issues are complex and important in many domains, for example. In terms of a computational research field of machine learning, selection of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the well-known machine learning algorithms is SVM, which is classical as well as original. The one of a member of SVM-criterion is Support Vector Machine-Recursive Feature Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm of the SVM-RFE with Q-learning in reinforcement learning for better variable selection of feature pattern. By comparing our proposed algorithm with the well-known SVM-RFE combining Welch' T in published data, our result can show that the criterion from weight vector of SVM-RFE enhanced by Q-learning has been improved by an off-policy by a more exploratory scheme of Q-learning.

Frequency Sub-bands Parallel Neural Network Classification of Infrasonic Signals Associated with Volcanic Eruptions (주파수 부대역별 병렬 신경망 분석에 의한 화산 분출 초저음파의 식별기법 연구)

  • Lee, Jin-Koo
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.785-787
    • /
    • 2014
  • 본 논문에서는 화산 분출 초저음파의 식별을 위해서 FSPNNC(Frequency Sub-bands Parallel Neural NetworkClassification)을 선택한다. FSPNNC 는 각기 다른 주파수 영역에서 독립적으로 추출한 특징벡터를 병렬 구조의 신경망에 학습하는 구조를 가지며 하나의 신경망은 하나의 분류 및 하나의 주파수 부대역만을 학습하고 다른 신경망들은 해당 특징벡터를 분류하지 않도록 학습된다. 실험은 단일 신경망 및 PNNCB(Parallel Neural Network Classifier Bank)와의 비교실험을 통하여 식별 성능을 제시한다.

Analyzing Lung Cancer Using Statistical Feature Vector From Ultrasound Image (초음파 영상의 통계적 특징 벡터를 활용한 폐암 분류)

  • Ha, Soo-Hee;Yoo, Jae-Chern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.27-28
    • /
    • 2020
  • 본 논문에서는 초음파 영상의 통계적 특징벡터를 활용하여 폐암 분류를 제안한다. 폐암의 초음파 사진들을 비교 분석하여 각각의 label에 맞는 feature vector를 선별한다. 선택된 feature vector는 SVM을 이용하여 훈련 시킨 후, 최종적으로 폐암을 구별한다.

  • PDF