• Title/Summary/Keyword: 특징벡터선택

Search Result 169, Processing Time 0.027 seconds

Text Region Verification in Natural Scene Images using Multi-resolution Wavelet Transform and Support Vector Machine (다해상도 웨이블릿 변환과 써포트 벡터 머신을 이용한 자연영상에서의 문자 영역 검증)

  • Bae Kyungsook;Choi Youngwoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.667-674
    • /
    • 2004
  • Extraction of texts from images is a fundamental and important problem to understand the images. This paper suggests a text region verification method by statistical means of stroke features of the characters. The method extracts 36 dimensional features from $16\times16$sized text and non-text images using wavelet transform - these 36 dimensional features express stroke and direction of characters - and select 12 sub-features out of 36 dimensional features which yield adequate separation between classes. After selecting the features, SVM trains the selected features. For the verification of the text region, each $16\times16$image block is scanned and classified as text or non-text. Then, the text region is finally decided as text region or non-text region. The proposed method is able to verify text regions which can hardly be distin guished.

A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features (명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법)

  • Kang, Seung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.870-878
    • /
    • 2013
  • In this paper, we propose a novel fingerprint classification method to enhance the accuracy and efficiency of the fingerprint identification system, one of biometrics systems. According to the previous researches, fingerprints can be categorized into the several patterns based on their pattern of ridges and valleys. After construction of fingerprint database based on their patters, fingerprint classification approach can help to accelerate the fingerprint recognition. The reason is that classification methods reduce the size of the search space to the fingerprints of the same category before matching. First, we suggest a method to extract region of interest (ROI) which have real information about fingerprint from the image. And then we propose a feature extraction method which combines gray level co-occurrence matrix (GLCM) and wavelet features. Finally, we compare the performance of our proposed method with the existing method which use only GLCM as the feature of fingerprint by using the multi-layer perceptron and support vector machine.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

Passports Recognition using ART2 Algorithm and Face Verification (ART2 알고리즘과 얼굴 인증을 이용한 여권 인식)

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.190-197
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 여상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART2 알고리즘을 적용하여 인식한다. 얼굴 인증을 위해 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 여권에서 추출된 얼굴 영역과의 유사도 측정을 통하여 여권 얼굴 영역의 위조 여부를 판별한다. 얼굴 인증을 위해서 Hue, YIQ-I, YCbCr-Cb 특징들의 유사도를 종합적으로 분석하여 얼굴 인증에 적용한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에 얼굴 부분을 위조한 여권과 노이즈, 대비 증가 및 감소, 밝기 증가 및 감소 및 여권 영상을 흐리게 하여 실험한 결과, 제안된 방법이 여권 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실

  • PDF

Performance Improvement of Fast Speaker Adaptation Based on Dimensional Eigenvoice and Adaptation Mode Selection (차원별 Eigenvoice와 화자적응 모드 선택에 기반한 고속화자적응 성능 향상)

  • 송화전;이윤근;김형순
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2003
  • Eigenvoice method is known to be adequate for fast speaker adaptation, but it hardly shows additional improvement with increased amount of adaptation data. In this paper, to deal with this problem, we propose a modified method estimating the weights of eigenvoices in each feature vector dimension. We also propose an adaptation mode selection scheme that one method with higher performance among several adaptation methods is selected according to the amount of adaptation data. We used POW DB to construct the speaker independent model and eigenvoices, and utterances(ranging from 1 to 50) from PBW 452 DB and the remaining 400 utterances were used for adaptation and evaluation, respectively. With the increased amount of adaptation data, proposed dimensional eigenvoice method showed higher performance than both conventional eigenvoice method and MLLR. Up to 26% of word error rate was reduced by the adaptation mode selection between eigenvoice and dimensional eigenvoice methods in comparison with conventional eigenvoice method.

Corrupted Region Restoration based on 2D Tensor Voting (2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할)

  • Park, Jong-Hyun;Toan, Nguyen Dinh;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.205-210
    • /
    • 2008
  • A new approach is proposed for restoration of corrupted regions and segmentation in natural text images. The challenge is to fill in the corrupted regions on the basis of color feature analysis by second order symmetric stick tensor. It is show how feature analysis can benefit from analyzing features using tensor voting with chromatic and achromatic components. The proposed method is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image into chromatic and achromatic components to analyze images. Secondly, selected feature vectors are analyzed by second-order symmetric stick tensor. And tensors are redefined by voting information with neighbor voters, while restore the corrupted regions. Lastly, mode estimation and segmentation are performed by adaptive mean shift and separated clustering method respectively. This approach is automatically done, thereby allowing to easily fill-in corrupted regions containing completely different structures and surrounding backgrounds. Applications of proposed method include the restoration of damaged text images; removal of superimposed noises or streaks. We so can see that proposed approach is efficient and robust in terms of restoring and segmenting text images corrupted.

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site (금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 2019
  • Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

Prediction of arrhythmia using multivariate time series data (다변량 시계열 자료를 이용한 부정맥 예측)

  • Lee, Minhai;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.671-681
    • /
    • 2019
  • Studies on predicting arrhythmia using machine learning have been actively conducted with increasing number of arrhythmia patients. Existing studies have predicted arrhythmia based on multivariate data of feature variables extracted from RR interval data at a specific time point. In this study, we consider that the pattern of the heart state changes with time can be important information for the arrhythmia prediction. Therefore, we investigate the usefulness of predicting the arrhythmia with multivariate time series data obtained by extracting and accumulating the multivariate vectors of the feature variables at various time points. When considering 1-nearest neighbor classification method and its ensemble for comparison, it is confirmed that the multivariate time series data based method can have better classification performance than the multivariate data based method if we select an appropriate time series distance function.

Object VR-based 2.5D Virtual Textile Wearing System : Viewpoint Vector Estimation and Textile Texture Mapping (오브젝트 VR 기반 2.5D 가상 직물 착의 시스템 : 시점 벡터 추정 및 직물 텍스쳐 매핑)

  • Lee, Eun-Hwan;Kwak, No-Yoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.19-26
    • /
    • 2008
  • This paper is related to a new technology allowing a user to have a 360 degree viewpoint of the virtual wearing object, and to an object VR(Virtual Reality)-based 2D virtual textile wearing system using viewpoint vector estimation and textile texture mapping. The proposed system is characterized as capable of virtually wearing a new textile pattern selected by the user to the clothing shape section segmented from multiview 2D images of clothes model for object VR, and three-dimensionally viewing its virtual wearing appearance at a 360 degree viewpoint of the object. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi -automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.

  • PDF

Multiview Video Sequence CODEC with View Scalability (View Scalability를 고려한 다시점 동영상 코덱)

  • 임정은;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2004
  • A multiview sequence CODEC with view scaiability is proposed in this paper. We define a GGOP (Group of GOP) structure as a basic coding unit to efficiently code multiview sequences. 7he proposed CODEC provides flexible GGOP structures based on the number of views and baseline distances among cameras. Multiview sequences encode consists of disparity estimation/compensation, motion estimation/compensation, residual coding and rate control and generates multiview sequence bitstream. The main bitstream is the same as an MPEG-2 mono-sequence bitstream for MPEG-2 compatibility. The auxiliary bitstream contains information concerning the remaining multiview sequences except for the reference sequences. The proposed CODEC with view scalability provides that a number of view flints are selectively determined at the receiver according to the type of display modes. The proposed multiview sequence CODEC is tested with several multiview sequences to determine its flexibility. compatibility with MPEG-2 and view scaiability. In addition, we subjectively confirm that the decoded bitstreams with view scaiability can be Properly displayed by several types of display modes. including 3D monitors.