• 제목/요약/키워드: 특징벡터선택

검색결과 169건 처리시간 0.032초

Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘 (Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model)

  • 문선국;최택성;박영철;윤대희
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.965-974
    • /
    • 2007
  • 본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.

출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법 (A Novel Feature Selection Method for Output Coding based Multiclass SVM)

  • 이영주;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.795-801
    • /
    • 2013
  • 서포트 벡터 머신은 뛰어난 일반화 성능에 힘입어 다양한 분야에서 의사 결정 나무나 인공 신경망에 비해 더 좋은 분류 성능을 보이고 있기 때문에 최근 널리 사용되고 있다. 서포트 벡터 머신은 기본적으로 이진 분류 문제를 위하여 설계되었기 때문에 서포트 벡터 머신을 다중 클래스 문제에 적용하기 위한 방법으로 다중 이진 분류기의 출력 결과를 이용하는 출력 코딩 방법이 주로 사용되고 있다. 그러나 출력 코딩 기반 서포트 벡터 머신에 사용된 기존 특징 선택 기법은 각 분류기의 정확도 향상을 위한 특징이 아니라 전체 분류 정확도 향상을 위한 특징을 선택하고 있다. 본 논문에서는 출력 코딩 기반 서포트 벡터 머신의 각 이진 분류기의 분류 정확도를 최대화하는 특징을 각각 선택하여 사용함으로써, 전체 분류 정확도를 향상시키는 특징 선택 기법을 제안한다. 실험 결과는 제안 기법이 기존 특징 선택 기법에 비하여 통계적으로 유의미한 분류 정확도 향상이 있었음을 보여주었다.

PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구 (A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithms)

  • 김웅기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1857_1858
    • /
    • 2009
  • 본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.

  • PDF

자기 조직화 지도 모형을 이용한 인종별 얼굴 영상 군집화 기법 (Face Data Clustering Method for Face Recognition Using Self Organizing Feature Map)

  • 권혜련;고병철;변혜란;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.577-579
    • /
    • 2003
  • 본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.

  • PDF

신경망을 이용한 필기 숫자 인식에서 부류 분별에 기반한 특징 선택 (Feature Selection Based on Class Separation in Handwritten Numeral Recognition Using Neural Network)

  • 이진선
    • 한국정보처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.543-551
    • /
    • 1999
  • 본 논문의 목적은 필기 숫자 인식에서 특징의 부류 분별력을 분석하고, 이를 특징 선택에 활용하는 것이다. 부류 분별력을 측정하기 위하여 Parzen 윈도우를 이용하여 부류 분포를 추정하였고, 서로 다른 부류의 부류 분포간의 거리를 부류 분별로 정의하였다. 이렇게 계산된 부류 분별을 이용하여, 특징 벡터에서 쓸모 없거나 중복성을 갖는 특징을 제거하여 특징 벡터의 차원을 줄인다. 실험은 CENPARMI 필기 숫자에 대해 수행하였으며 10개 부류 전체 뿐 아니라 2개 부류에 대해서도 수행하였다. 실험 결과 10-부류 필기 숫자 인식에서 256-차원 원래 특징 벡터를 인식률 손실 없이 22% 줄일 수 있어, 부류 분별이 특징 선택을 위한 유용한 도구임을 보였다.

  • PDF

가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on Gabor Feature Vector illumination PCA Model)

  • 설태인;김상훈;정선태;조성원
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.67-76
    • /
    • 2008
  • 성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.

특징 선택과 서포트 벡터 머신을 활용한 에너지 절도 검출 (Energy Theft Detection Based on Feature Selection Methods and SVM)

  • 이지영;선영규;이승우;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.119-125
    • /
    • 2021
  • 전력 그리드 시스템이 ICT 기술의 발달로 지능화됨에 따라 그리드에 연결된 사용자의 전력 사용량 정보를 획득하고 분석할 수 있게 되었다. 본 논문에서는 스마트 그리드에서 경제적 손실을 일으키는 주된 원인인 에너지 절도 문제를 특징 선택과 서포트 벡터 머신을 이용해서 해결한다. 본 논문에서 제안하는 시스템의 데이터 전처리 과정은 다섯 단계다. 전처리 단계에서 필터링 기반 특징 선택 방법인 분산 분석 기반 방식과 상호의존정보 기반 방식을 활용해 특징을 선택한다. 시뮬레이션 결과 입력 데이터의 특징을 그대로 이용하는 것보다 상호의존정보 기반 특징 선택을 이용하면 적은 입력 특징을 이용해 서포트 벡터 머신 기반 분류기로부터 더 높은 분류 성능을 얻어 낼 수 있다.

위너필터 방법을 사용한 음성 특징 벡터 추출에 의한 화자인식 기법 (Speaker Recognition Technique by Extracting Speech Feature Vector using Wiener Filter Method)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.617-618
    • /
    • 2017
  • 음성인식의 적절한 성능을 구하기 위하여 잡음환경 하에서 최적인 음성의 특징 벡터를 선택할 필요가 있다. 본 논문에서는 위너필터 방법과 인간의 청각계의 특성을 활용한 멜 주파수 켑스트럼 계수를 사용한 음성인식 방법을 제안한다. 본 논문에서 제안하는 음성의 특징 벡터는 음성 중에서 배경잡음을 제거한 후에 깨끗한 음성신호의 벡터를 추출하는 방법이며, 다층 퍼셉트론 신경회로망에 멜 주파수 켑스트럼 계수를 입력하여 학습시킴으로써 음성인식을 구현한다. 본 실험에서는 멜 주파수 켑스트럼 계수의 특징 벡터를 사용하여 백색잡음이 혼합된 경우에 대하여 음성인식 실험을 실시하였다.

  • PDF

음성신호기반의 감정분석을 위한 특징벡터 선택 (Discriminative Feature Vector Selection for Emotion Classification Based on Speech.)

  • 최하나;변성우;이석필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1391-1392
    • /
    • 2015
  • 최근 컴퓨터 기술이 발전하고, 컴퓨터의 형태가 다양해지면서 여러 wearable device들이 생겨났다. 이에 따라 휴먼 인터페이스 기술에서 사람의 감정정보가 중요해졌고, 감정인식에 대한 연구들이 많이 진행 되어 왔다. 본 논문에서는 감정분석에 적합한 특징벡터를 제시하고자 한다. 이를 위해 사람의 감정을 보통, 기쁨, 슬픔, 화남 4가지로 분류하고 방송매체를 통하여 잡음 없이 녹음하였다. 특징벡터는 MFCC, LPC, LPCC 3가지를 추출하였고 Bhattacharyya거리 측정을 통하여 분리도를 비교하였다.

  • PDF

퍼지기반 Segment-Boost 방법을 통한 효과적인 얼굴인식 (Fuzzy-based Segment-Boost Method for Effective Face Recognition)

  • 장원석;노창현;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제18권1호
    • /
    • pp.17-25
    • /
    • 2009
  • 본 논문에서는 퍼지기반 Segment-Boost 방법을 소개하고, 이를 이용한 효과적인 얼굴인식 방법을 제안한다. 퍼지기반 Segment-Boost는 기존의 Segment-Boost가 갖고 있던 문제점과 성능의 한계요소들을 제거함으로써, 향상된 학습 성능뿐만 아니라 학습 성능의 안정성과 신뢰성을 보장하여 준다. 퍼지기반 Segment-Boost는 퍼지이론을 이용함으로써 서브벡터 선택개수를 최적화하고, 이를 통해 최상의 학습 성능이 유도될 수 있도록 설계되었다. 또한, 퍼지기반 Segment-Boost 내에서의 퍼지추론을 위해 본 논문에서 설계한 퍼지 제어기는 퍼지기반 Segment-Boost의 학습 성능을 측정하고, 최적화된 서브벡터 선택개수를 추론함으로써 서브벡터 선택개수를 제어한다. 시뮬레이션 결과, 본 논문에서 설계한 퍼지 제어기는 실제 최적의 서브벡터 선택개수에 매우 근접한 값을 추론하였다. 그 결과, 퍼지기반 Segment-Boost는 비교 실험한 boosting 방법보다 높은 얼굴인식률을 보여줌과 동시에 기존 Segment-Boost 만큼의 빠른 특징선택 속도를 유지하였고, 이러한 실험결과를 통해 퍼지기반 Segment-Boost의 학습 성능과 이를 이용한 특징선택 및 얼굴인식 방법에 있어서의 성능향상 및 안정성이 입증되었다.