본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.
서포트 벡터 머신은 뛰어난 일반화 성능에 힘입어 다양한 분야에서 의사 결정 나무나 인공 신경망에 비해 더 좋은 분류 성능을 보이고 있기 때문에 최근 널리 사용되고 있다. 서포트 벡터 머신은 기본적으로 이진 분류 문제를 위하여 설계되었기 때문에 서포트 벡터 머신을 다중 클래스 문제에 적용하기 위한 방법으로 다중 이진 분류기의 출력 결과를 이용하는 출력 코딩 방법이 주로 사용되고 있다. 그러나 출력 코딩 기반 서포트 벡터 머신에 사용된 기존 특징 선택 기법은 각 분류기의 정확도 향상을 위한 특징이 아니라 전체 분류 정확도 향상을 위한 특징을 선택하고 있다. 본 논문에서는 출력 코딩 기반 서포트 벡터 머신의 각 이진 분류기의 분류 정확도를 최대화하는 특징을 각각 선택하여 사용함으로써, 전체 분류 정확도를 향상시키는 특징 선택 기법을 제안한다. 실험 결과는 제안 기법이 기존 특징 선택 기법에 비하여 통계적으로 유의미한 분류 정확도 향상이 있었음을 보여주었다.
본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.
본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.
본 논문의 목적은 필기 숫자 인식에서 특징의 부류 분별력을 분석하고, 이를 특징 선택에 활용하는 것이다. 부류 분별력을 측정하기 위하여 Parzen 윈도우를 이용하여 부류 분포를 추정하였고, 서로 다른 부류의 부류 분포간의 거리를 부류 분별로 정의하였다. 이렇게 계산된 부류 분별을 이용하여, 특징 벡터에서 쓸모 없거나 중복성을 갖는 특징을 제거하여 특징 벡터의 차원을 줄인다. 실험은 CENPARMI 필기 숫자에 대해 수행하였으며 10개 부류 전체 뿐 아니라 2개 부류에 대해서도 수행하였다. 실험 결과 10-부류 필기 숫자 인식에서 256-차원 원래 특징 벡터를 인식률 손실 없이 22% 줄일 수 있어, 부류 분별이 특징 선택을 위한 유용한 도구임을 보였다.
성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.
전력 그리드 시스템이 ICT 기술의 발달로 지능화됨에 따라 그리드에 연결된 사용자의 전력 사용량 정보를 획득하고 분석할 수 있게 되었다. 본 논문에서는 스마트 그리드에서 경제적 손실을 일으키는 주된 원인인 에너지 절도 문제를 특징 선택과 서포트 벡터 머신을 이용해서 해결한다. 본 논문에서 제안하는 시스템의 데이터 전처리 과정은 다섯 단계다. 전처리 단계에서 필터링 기반 특징 선택 방법인 분산 분석 기반 방식과 상호의존정보 기반 방식을 활용해 특징을 선택한다. 시뮬레이션 결과 입력 데이터의 특징을 그대로 이용하는 것보다 상호의존정보 기반 특징 선택을 이용하면 적은 입력 특징을 이용해 서포트 벡터 머신 기반 분류기로부터 더 높은 분류 성능을 얻어 낼 수 있다.
음성인식의 적절한 성능을 구하기 위하여 잡음환경 하에서 최적인 음성의 특징 벡터를 선택할 필요가 있다. 본 논문에서는 위너필터 방법과 인간의 청각계의 특성을 활용한 멜 주파수 켑스트럼 계수를 사용한 음성인식 방법을 제안한다. 본 논문에서 제안하는 음성의 특징 벡터는 음성 중에서 배경잡음을 제거한 후에 깨끗한 음성신호의 벡터를 추출하는 방법이며, 다층 퍼셉트론 신경회로망에 멜 주파수 켑스트럼 계수를 입력하여 학습시킴으로써 음성인식을 구현한다. 본 실험에서는 멜 주파수 켑스트럼 계수의 특징 벡터를 사용하여 백색잡음이 혼합된 경우에 대하여 음성인식 실험을 실시하였다.
최근 컴퓨터 기술이 발전하고, 컴퓨터의 형태가 다양해지면서 여러 wearable device들이 생겨났다. 이에 따라 휴먼 인터페이스 기술에서 사람의 감정정보가 중요해졌고, 감정인식에 대한 연구들이 많이 진행 되어 왔다. 본 논문에서는 감정분석에 적합한 특징벡터를 제시하고자 한다. 이를 위해 사람의 감정을 보통, 기쁨, 슬픔, 화남 4가지로 분류하고 방송매체를 통하여 잡음 없이 녹음하였다. 특징벡터는 MFCC, LPC, LPCC 3가지를 추출하였고 Bhattacharyya거리 측정을 통하여 분리도를 비교하였다.
본 논문에서는 퍼지기반 Segment-Boost 방법을 소개하고, 이를 이용한 효과적인 얼굴인식 방법을 제안한다. 퍼지기반 Segment-Boost는 기존의 Segment-Boost가 갖고 있던 문제점과 성능의 한계요소들을 제거함으로써, 향상된 학습 성능뿐만 아니라 학습 성능의 안정성과 신뢰성을 보장하여 준다. 퍼지기반 Segment-Boost는 퍼지이론을 이용함으로써 서브벡터 선택개수를 최적화하고, 이를 통해 최상의 학습 성능이 유도될 수 있도록 설계되었다. 또한, 퍼지기반 Segment-Boost 내에서의 퍼지추론을 위해 본 논문에서 설계한 퍼지 제어기는 퍼지기반 Segment-Boost의 학습 성능을 측정하고, 최적화된 서브벡터 선택개수를 추론함으로써 서브벡터 선택개수를 제어한다. 시뮬레이션 결과, 본 논문에서 설계한 퍼지 제어기는 실제 최적의 서브벡터 선택개수에 매우 근접한 값을 추론하였다. 그 결과, 퍼지기반 Segment-Boost는 비교 실험한 boosting 방법보다 높은 얼굴인식률을 보여줌과 동시에 기존 Segment-Boost 만큼의 빠른 특징선택 속도를 유지하였고, 이러한 실험결과를 통해 퍼지기반 Segment-Boost의 학습 성능과 이를 이용한 특징선택 및 얼굴인식 방법에 있어서의 성능향상 및 안정성이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.