• Title/Summary/Keyword: 특징맵

Search Result 269, Processing Time 0.027 seconds

Edge Feature Vector Extraction using Higher-Order Local Autocorrelation and Its Application in Image Retrieval (고차국소 자기상관함수를 이용한 에지 특징벡터의 생성과 유사이미지에의 적용)

  • 윤미진;오군석;김판구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.562-564
    • /
    • 2002
  • 본 논문에서는 자기상관함수의 국소적 특징을 사용하여 에지 특징을 추출한 후, 이를 이용해 유사이미지를 검색하는 방법을 제시한다. 자기상관함수의 국소적 특징을 이용하여 이미지를 검색할 경우 크기, 밝기, 색상등과 같은 이미지 요소가 서로 다를 경우에도 영향을 받지 않고 에지 특징정보를 추출해 낼 수 있다. 이는 얻어진 에지 특징을 이미지 크기와 고차 국소 자기상관함수의 변위에 의해 변하지 않도록 정규화를 하고, 동일 이미지에 대해 밝기가 조금 달라지면 검색효율이 떨어지는 점을 해결하기 위해 거리척도로서 방향여현거리(direction cosine distance)를 이용함으로써 가능하다. 이렇게 추출된 특징벡터를 자기조직화 맵에 의하여 클러스터링하고, 유사이미지 검색의 효율성을 비교해본 결과, 본 논문에서 제시한 방법을 사용하여 검색한 경우 재현율이 기존의 방법에 비해서 비교적 높은 수치를 나타냈다.

  • PDF

Stereo Vision-Based Obstacle Detection and Vehicle Verification Methods Using U-Disparity Map and Bird's-Eye View Mapping (U-시차맵과 조감도를 이용한 스테레오 비전 기반의 장애물체 검출 및 차량 검증 방법)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.86-96
    • /
    • 2010
  • In this paper, we propose stereo vision-based obstacle detection and vehicle verification methods using U-disparity map and bird's-eye view mapping. First, we extract a road feature using maximum frequent values in each row and column. And we extract obstacle areas on the road using the extracted road feature. To extract obstacle areas exactly we utilize U-disparity map. We can extract obstacle areas exactly on the U-disparity map using threshold value which consists of disparity value and camera parameter. But there are still multiple obstacles in the extracted obstacle areas. Thus, we perform another processing, namely segmentation. We convert the extracted obstacle areas into a bird's-eye view using camera modeling and parameters. We can segment obstacle areas on the bird's-eye view robustly because obstacles are represented on it according to ranges. Finally, we verify the obstacles whether those are vehicles or not using various vehicle features, namely road contacting, constant horizontal length, aspect ratio and texture information. We conduct experiments to prove the performance of our proposed algorithms in real traffic situations.

Optical Head Tracker using Pattern Matching for Initial Attitude (초기자세 획득을 위한 패턴 매칭을 이용한 광학 방식 헤드 트랙커)

  • Kim, Young-Il;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.470-475
    • /
    • 2009
  • This paper is the study which is head tracker using pattern matching. Proposal algorithm obtains initial attitude of head tracker using pattern matching. Optical head tracker consists of infrared LEDs(features) which are attached helmet as pattern, stereo infrared cameras. Proposal algorithm analyzes patterns by error rate of feature distance and estimates feature characteristic number. Initial attitude of head tracker is obtained to compare map data and feature characteristic number.

Hangul Text Detection using Text Corner Edge Feature Analysis in Natural Scene Images (자연영상에서 코너 에지 특징 분석방법을 이용한 한글 텍스트 검출기법에 관한 연구)

  • Park Jong-Cheon;Kwon Kyo-Hyun;Jun Byung-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.379-383
    • /
    • 2005
  • 본 연구에서는 자연 이미지에서 한글 텍스트가 갖고 있는 에지 코너 특징을 이용한 한글 텍스트 검출방법을 제안한다. 자연영상으로부터 에지를 검출하고, 검출된 에지를 20종류의 에지 구조 성분을 갖는 에지 맵을 생성한다. 생성된 에지 맵에서 한글 텍스트 특징 갖는 특징들을 조합하여 모두 8가지의 텍스트 영역 후보 특징을 추출한다. 추출된 텍스트 영역의 특징을 수평 및 수직방향으로 검사하여 텍스트의 시작 라인과 끝라인을 검출하여 텍스트 영역의 수평좌표를 구한다. 추출된 텍스트 후보 영역에서 최종적으로 텍스트 영역을 결정한다. 제안한 방법은 다양한 종류의 자연 이미지에서 텍스트 영역을 검출에서 좋은 성능을 나타냈다.

  • PDF

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

The shape representation of 3D object using a quadric polynomial (2차 다항식을 이용한 3차원 물체의 형상 표현)

  • 현대환;이선호;김태은;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.9B
    • /
    • pp.1251-1258
    • /
    • 2001
  • 본 논문은 2차 다항식을 이용하여 3차원 물체의 표면 특징을 추출하고 표현하는 방법을 제안한다. 본 연구는 수정된 스캔 라인 기법을 이용하여 에지 맵을 얻는다. 에지 맵으로부터 3차원 물체의 각 면들을 분리하기 위해 레이블링 연산을 하고 각 면에서 중심점과 모서리 점들을 추출한다. 그 다음에, 평면 방정식으로부터 각 면이 평면인지 곡면인지를 판단한다. 3차원 물체를 표현하기 위해 각 면의 평면 또는 곡면의 계수 및 특징들을 추출한다. 합성영상과 실측영상을 통해서 제안된 기법의 성능을 알아보았고, 또한 제안된 기법으로 3차원 물체를 재구성하였다.

  • PDF

Image Caption Area extraction using Saliency Map and Max Filter (중요도 맵과 최댓값 필터를 이용한 영상 자막 영역 추출)

  • Kim, Youngjin;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.63-64
    • /
    • 2014
  • 본 논문에서는 Saliency map과 Max Filter를 이용한 영상의 자막영역을 추출 한다. Saliency map은 눈에 띄는 영역, 즉 영상에서 주변영역에 비해 밝기 차이가 심한 영역과 윤곽선에 대한 특징이 강한 영역을 돌출하는 것을 말하며, MaxFilter는 중심 픽셀을 최대 윈도우 값을 사용하는 것으로 극단적인 Impulse Noise를 제거하는데 효과적이며 특히 어두운 스파이크를 제거하는데 유용하게 사용된다. 이 두 가지의 특징들을 이용하여 영상의 자막 영역을 추출한다.

  • PDF

The Efficient Method of Parallel Genetic Algorithm using MapReduce of Big Data (빅 데이터의 MapReduce를 이용한 효율적인 병렬 유전자 알고리즘 기법)

  • Hong, Sung-Sam;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • Big Data is data of big size which is not processed, collected, stored, searched, analyzed by the existing database management system. The parallel genetic algorithm using the Hadoop for BigData technology is easily realized by implementing GA(Genetic Algorithm) using MapReduce in the Hadoop Distribution System. The previous study that the genetic algorithm using MapReduce is proposed suitable transforming for the GA by MapReduce. However, they did not show good performance because of frequently occurring data input and output. In this paper, we proposed the MRPGA(MapReduce Parallel Genetic Algorithm) using improvement Map and Reduce process and the parallel processing characteristic of MapReduce. The optimal solution can be found by using the topology, migration of parallel genetic algorithm and local search algorithm. The convergence speed of the proposal method is 1.5 times faster than that of the existing MapReduce SGA, and is the optimal solution can be found quickly by the number of sub-generation iteration. In addition, the MRPGA is able to improve the processing and analysis performance of Big Data technology.

Forward Vehicle Detection Algorithm Using Column Detection and Bird's-Eye View Mapping Based on Stereo Vision (스테레오 비전기반의 컬럼 검출과 조감도 맵핑을 이용한 전방 차량 검출 알고리즘)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Kim, Jong-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.255-264
    • /
    • 2011
  • In this paper, we propose a forward vehicle detection algorithm using column detection and bird's-eye view mapping based on stereo vision. The algorithm can detect forward vehicles robustly in real complex traffic situations. The algorithm consists of the three steps, namely road feature-based column detection, bird's-eye view mapping-based obstacle segmentation, obstacle area remerging and vehicle verification. First, we extract a road feature using maximum frequent values in v-disparity map. And we perform a column detection using the road feature as a new criterion. The road feature is more appropriate criterion than the median value because it is not affected by a road traffic situation, for example the changing of obstacle size or the number of obstacles. But there are still multiple obstacles in the obstacle areas. Thus, we perform a bird's-eye view mapping-based obstacle segmentation to divide obstacle accurately. We can segment obstacle easily because a bird's-eye view mapping can represent the position of obstacle on planar plane using depth map and camera information. Additionally, we perform obstacle area remerging processing because a segmented obstacle area may be same obstacle. Finally, we verify the obstacles whether those are vehicles or not using a depth map and gray image. We conduct experiments to prove the vehicle detection performance by applying our algorithm to real complex traffic situations.

Deep Subspace clustering with attention mechanism (데이터 표현 강조 기법을 활용한 부분 공간 군집화)

  • Baek, Sang Won;Yoon, Sang Min
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.721-723
    • /
    • 2020
  • 부분 공간 군집화는 고차원 데이터에서 의미 있는 특징들을 선별 및 추출하여 저차원의 부분 공간에서 군집화 하는 것이다. 그러나 최근 딥러닝 활용한 부분 공간 군집화 연구들은 AutoEncoder을 기반으로 의미있는 특징을 선별하는 것이 아닌 특징 맵의 크기를 증가시켜서 네트워크의 표현 능력에 중점을 둔 연구되고 있다. 본 논문에서는 AutoEncdoer 네트워크에 Channel Attention 모델을 활용하여 Encoder와 Decoder에서 부분 공간 군집화를 위한 특징을 강조하는 네트워크를 제안한다. 본 논문에서 제안하는 네트워크는 고차원의 이미지에서 부분 공간 군집화를 위해 강조된 특징 맵을 추출하고 이를 이용해서 보다 향상된 성능을 보여주었다.

  • PDF