패턴인식 시스템은 일반적으로 데이터의 전처리, 특징 추출, 학습단계의 과정을 거쳐서 개발되어 진다. 그중에서도 특징 추출 과정은 다차원 공간을 가진 입력 데이터의 복잡도를 줄여서 다음 단계인 학습단계에서 계산 복잡도와 인식률을 향상시키는 역할을 한다. 패턴인식에서 특징 추출 기법으로써 principal component analysis, factor analysis, linear discriminant analysis 같은 방법들이 널리 사용되어져 왔다. 이 논문에서는 singular value decomposition (SVD) 방법이 패턴인식 시스템의 특징 추출과정에 유용하게 사용될 수 있음을 보인다. 특징 추출단계에서 SVD 기법의 유용성을 검증하기 위하여 원격탐사 응용에 적용하였는데, 실험결과는 널리 쓰이는 PCA에 비해 약 25%의 인식률의 향상을 가져온다는 것을 알 수 있다.
본 연구에서는 3차원 얼굴 데이타에서 인접 부위의 깊이 차를 이용하여 얼굴의 주요 특징을 추출해 내는 방법을 제안한다. 인간은 사물의 특정 부분의 깊이 정보를 인식하는데 있어서 인접 부위와의 깊이 정보를 비교하고, 이를 바탕으로 깊이 값에 의한 대조가 두드러진 정도에 따라 상대적으로 깊이가 깊고 얕음을 지각하게 된다. 이런 인식 원리를 얼굴의 특징 추출에 적용하여 간단한 연산 과정을 통해 신뢰성 있고, 빠른 얼굴의 특징 추출이 가능하다. 인접 부위의 깊이 차는 수평방향과 수직방향으로 각각 일정 거리를 둔 지점에서의 두 지점간의 깊이 차로 생성된다. 생성된 수평, 수직 방향으로 인접 깊이 차와 입력된 3차원 얼굴 영상을 분석하여 3차원 얼굴 영상에서 가장 주된 특징이 되는 코 영역을 추출하였다.
본 논문에서는 개선된 특징추출을 이용한 원자력 발전소 증기발생기 세관의 결함 형태 분류에 대한 연구를 수행한다. 본 논문에서는 4가지 축대칭 결함, 즉 I-In 형태, I-Out 형태, V-In 형태, V-Out 형태 결함을 고려한다. 유한요소법에 기초한 수치해석 프로그램을 이용하여 결함의 폭과 깊이를 변화시켜가면서 400개의 와전류탐상시험(ECT) 신호를 생성하였다. 이와 같이 생성된 ECT 신호로부터 새로운 특징을 제안하였는데, 여기에는 최대 임피던스 값을 갖는 점과 최대 임피던스 값의 1/2의 값을 갖는 점 사이의 위상각과 최대임피던스 값을 갖는 점과 최대 임피던스 값의 10%, 20%, 30%, 40%를 갖는 점사이의 위상각들이 포함된다. 또한, 결함형태를 분류하기 위하여 은닉층이 하나인 다층퍼셉트론을 사용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 최대오차와 평균제곱오차 측면에서 향상된 결함 분류 성능을 얻는다는 것을 보였다.
일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.
MPEG-VCM(Video Coding for Machines)에서는 머신비전(machine vision) 네트워크의 백본(backbone)에서 추출된 이미지/비디오 특징 압축을 위한 표준화를 진행하고 있다. 현재 VCM 표준기술 탐색 과정에서 가장 좋은 압축 성능을 보이는 MSFC(Multi-Scale Feature compression) 기반 압축 네트워크 모델은 추출된 멀티-스케일 특징을 단일-스케일 특징으로 변환하여 특징맵으로 구성하고 이를 VVC 로 압축한다. 본 논문에서는 MSFC 기반 압축 모델에서 Min-Max 값 시그널링을 제외한 최소-최대(Min-Max) 정규화를 포함한 개선된 특징맵 생성 기법을 제시한다. 즉, 제안기법은 VCM 디코더에서의 특징맵 복원을 위한 Min-Max 값을 학습 기반으로 생성함으로써 Min-Max 시그널링의 비트 오버헤드 절감뿐만 아니라 별도의 시그널링 기제를 생략한 보다 단순한 전송 비트스트림 구성을 가능하게 한다. 실험결과 제안기법은 이미지 앵커(Anchor) 대비 BPP-mAP 성능에서 83.24% BD-rate 이득을 보이며, 이는 기존 MSFC 보다 1.74%정도 다소 떨어지지만 별도의 Min-Max 시그널링 없이도 기존의 성능을 유지할 수 있음을 보인다.
본 논문에서는 지역 최대 빈도 값을 이용하여 V-시차 맵 상에서 도로 특징 정보를 추출하고 이를 이용한 장애물체 검출 방법을 제안한다. 기존 방법은 장애물체의 크기 수 및 종류 등이 변경되면 추출 성능이 영향을 받는다. 특히 크기가 큰 장애물체나 중앙분리대와 같은 연속적인 장애물체에 대한 추출이 어렵다. 이를 해결하기 위하여 주변 상황 영향을 적게 받는 도로 특징 정보를 새로운 장애물체의 유무 판단 기준으로 사용한다. 도로 특징 정보는 V-시차 맵 상에서 특정 열에 장애물체가 많이 존재하는 상황에서도 전체적인 그 특징을 잘 유지함으로 그 강건성이 높아 새로운 판단기준으로 적합하다. 그리고 V-시차 맵 상에서 도로 특징 정보를 쉽게 추출하기 위하여 먼저 지역 최대 빈도 값을 이용하여 이진 V-시차 맵을 생성한다. 그리고 기존 중간 값과 비교하여 도로 특징 정보가 아닌 부분은 제거하고, 마지막으로 보간을 통하여 최종 도로 특징 정보를 추출한다. 이를 시차 맵의 각 행과 비교하여 장애물체 영역을 검출한다. 또한 장애물체 영역 검출 성능을 향상시키기 위하여 검출 단계에서 발생한 노이즈를 제거하기 위한 후처리 과정도 제안한다. 그리고 실제 도로 영상에 적용한 실험을 통하여 제안한 알고리즘이 기존 방법에 비해 장애물체 검출 성능이 우수함을 보인다.
본 논문은 내용기반 이미지 검색시스템에서 사용하는 특징벡터들 중에서 하나인 형태 특징벡터를 추출하는데 초점을 맞쳤다. 특히 다양한 방향으로 회전된 영상의 형태를 수용할 수 있는 모멘트 정보를 영상의 형태 특징벡터로 사용하였다. 그 결과 영상과 회전되지 않은 영상간의 차이값이 0에 가까워 유사성이 아주 좋음을 알 수 있었다.
본 본문에서는 간단하면서 효과적인 관련성 귀환을 가진 영상 검색시스템에 대하여 연구하였다. 먼저 영상 데이터베이스 내에 있는 영상들에 대하여 Gabor Wavelet 변환을 이용하여 질감특징을 추출하고, 추출한 특징값을 다양한 형태로 영상검색에 이용하였다. 초기 검색결과에 대하여 관련성 귀환을 영상 검색시스템에 적용하고, 이를 기존의 관련성 귀환을 가진 시스템과 비교하였다. 16종류의 512개의 영상으로 구성된 영상 데이터베이스에 대하여 실험한 결과, 제한된 방법은 INRIA의 방법보다 각 귀환단계에서 약 7~8%의 높은 검색 효율을 보였다.
내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.
텍스쳐는 그 정의화 특징이 명확하지 않은 패턴이며, 무한한 변형에 따른 무한한 수의 텍스쳐가 존재한다. 이로 인해 사람의 텍스쳐 지각에 관한 연구에 어려움이 있다. 본 논문에서는 신경망으로 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각을 모의실험하였다. 쌍별비교와 비교판단법칙을 사용하여 사람이 지각하는 텍스쳐의 특징값과 텍스쳐간의 유사도 값을 구하였다. 구한 값을 바탕으로 신경망의 일종인 다층퍼셉트론을 사용하여 특징 추출기와 유사도 특정기를 구현하여 모의 실험하였다. 신경망을 사용하여 모의실험한 결과, 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각과 유사한 결과를 얻었다. 이러한 실험결과는 신경망으로 구현된 시스템이 사람의 감성적인 수치를 구하는 방법으로 사용될 수 있음을 보여 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.