• 제목/요약/키워드: 특징값 추출

검색결과 951건 처리시간 0.034초

특징추출을 위한 특이값 분할법의 응용 (The Application of SVD for Feature Extraction)

  • 이현승
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.82-86
    • /
    • 2006
  • 패턴인식 시스템은 일반적으로 데이터의 전처리, 특징 추출, 학습단계의 과정을 거쳐서 개발되어 진다. 그중에서도 특징 추출 과정은 다차원 공간을 가진 입력 데이터의 복잡도를 줄여서 다음 단계인 학습단계에서 계산 복잡도와 인식률을 향상시키는 역할을 한다. 패턴인식에서 특징 추출 기법으로써 principal component analysis, factor analysis, linear discriminant analysis 같은 방법들이 널리 사용되어져 왔다. 이 논문에서는 singular value decomposition (SVD) 방법이 패턴인식 시스템의 특징 추출과정에 유용하게 사용될 수 있음을 보인다. 특징 추출단계에서 SVD 기법의 유용성을 검증하기 위하여 원격탐사 응용에 적용하였는데, 실험결과는 널리 쓰이는 PCA에 비해 약 25%의 인식률의 향상을 가져온다는 것을 알 수 있다.

인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출 (Facial Feature Localization from 3D Face Image using Adjacent Depth Differences)

  • 김익동;심재창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.617-624
    • /
    • 2004
  • 본 연구에서는 3차원 얼굴 데이타에서 인접 부위의 깊이 차를 이용하여 얼굴의 주요 특징을 추출해 내는 방법을 제안한다. 인간은 사물의 특정 부분의 깊이 정보를 인식하는데 있어서 인접 부위와의 깊이 정보를 비교하고, 이를 바탕으로 깊이 값에 의한 대조가 두드러진 정도에 따라 상대적으로 깊이가 깊고 얕음을 지각하게 된다. 이런 인식 원리를 얼굴의 특징 추출에 적용하여 간단한 연산 과정을 통해 신뢰성 있고, 빠른 얼굴의 특징 추출이 가능하다. 인접 부위의 깊이 차는 수평방향과 수직방향으로 각각 일정 거리를 둔 지점에서의 두 지점간의 깊이 차로 생성된다. 생성된 수평, 수직 방향으로 인접 깊이 차와 입력된 3차원 얼굴 영상을 분석하여 3차원 얼굴 영상에서 가장 주된 특징이 되는 코 영역을 추출하였다.

개선된 특징 추출을 이용한 원전SG 세관 결함 패턴 분류에 관한 연구 (A Study on the Classification of Steam Generator Tube Defects Using an Improved Feature Extraction)

  • 조남훈;이향범
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.27-35
    • /
    • 2009
  • 본 논문에서는 개선된 특징추출을 이용한 원자력 발전소 증기발생기 세관의 결함 형태 분류에 대한 연구를 수행한다. 본 논문에서는 4가지 축대칭 결함, 즉 I-In 형태, I-Out 형태, V-In 형태, V-Out 형태 결함을 고려한다. 유한요소법에 기초한 수치해석 프로그램을 이용하여 결함의 폭과 깊이를 변화시켜가면서 400개의 와전류탐상시험(ECT) 신호를 생성하였다. 이와 같이 생성된 ECT 신호로부터 새로운 특징을 제안하였는데, 여기에는 최대 임피던스 값을 갖는 점과 최대 임피던스 값의 1/2의 값을 갖는 점 사이의 위상각과 최대임피던스 값을 갖는 점과 최대 임피던스 값의 10%, 20%, 30%, 40%를 갖는 점사이의 위상각들이 포함된다. 또한, 결함형태를 분류하기 위하여 은닉층이 하나인 다층퍼셉트론을 사용하였다. 컴퓨터 모의실험 연구를 통하여 제안된 방법이 최대오차와 평균제곱오차 측면에서 향상된 결함 분류 성능을 얻는다는 것을 보였다.

평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적 (Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function)

  • 김기상;김계영;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제8권9호
    • /
    • pp.1-9
    • /
    • 2008
  • 일반적으로 얼굴 추적 시 움직임에 강건한 Lucas-Kanade 추적 방법이 많이 사용된다. 그러나 얼굴이 회전되었을 경우, 정확한 얼굴 영역 검출이 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 Lucas-Kanade 추적 방법에 평가함수를 도입하여 회전에 강건한 자동 얼굴 영역 검출 및 추적 방법을 제안하였다. 얼굴영역은 색상정보를 이용하여 자동으로 추출하였으며, Harris 코너 추출 알고리즘으로 특징점을 추출하였다. 폐색된 특징점을 구분하기위하여 특징점마다 기존 특징점과 새로운 특징점과의 차이 값을 계산한다. 만약, 특징점이 폐색되었을 경우, 잡음을 제거하기 위하여 제거하며 특징점의 개수가 일정 임계값 이하일 경우, 얼굴 영역을 다시 검출하였다. 실험결과를 통하여 얼굴 영역이 회전되었을 경우, 기존의 Lucas-Kanade 추적 방법보다 더 좋은 결과를 확인하였다.

VCM 의 MSFC 기반 특징 압축을 위한 Min-Max 시그널링을 제외한 특징맵 생성 기법 (A Feature Map Generation Method for MSFC-Based Feature Compression without Min-Max Signaling in VCM)

  • 김동하;윤용욱;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.79-81
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machines)에서는 머신비전(machine vision) 네트워크의 백본(backbone)에서 추출된 이미지/비디오 특징 압축을 위한 표준화를 진행하고 있다. 현재 VCM 표준기술 탐색 과정에서 가장 좋은 압축 성능을 보이는 MSFC(Multi-Scale Feature compression) 기반 압축 네트워크 모델은 추출된 멀티-스케일 특징을 단일-스케일 특징으로 변환하여 특징맵으로 구성하고 이를 VVC 로 압축한다. 본 논문에서는 MSFC 기반 압축 모델에서 Min-Max 값 시그널링을 제외한 최소-최대(Min-Max) 정규화를 포함한 개선된 특징맵 생성 기법을 제시한다. 즉, 제안기법은 VCM 디코더에서의 특징맵 복원을 위한 Min-Max 값을 학습 기반으로 생성함으로써 Min-Max 시그널링의 비트 오버헤드 절감뿐만 아니라 별도의 시그널링 기제를 생략한 보다 단순한 전송 비트스트림 구성을 가능하게 한다. 실험결과 제안기법은 이미지 앵커(Anchor) 대비 BPP-mAP 성능에서 83.24% BD-rate 이득을 보이며, 이는 기존 MSFC 보다 1.74%정도 다소 떨어지지만 별도의 Min-Max 시그널링 없이도 기존의 성능을 유지할 수 있음을 보인다.

  • PDF

스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출 (A Road Feature Extraction and Obstacle Localization Based on Stereo Vision)

  • 이충희;임영철;권순;이종훈
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.28-37
    • /
    • 2009
  • 본 논문에서는 지역 최대 빈도 값을 이용하여 V-시차 맵 상에서 도로 특징 정보를 추출하고 이를 이용한 장애물체 검출 방법을 제안한다. 기존 방법은 장애물체의 크기 수 및 종류 등이 변경되면 추출 성능이 영향을 받는다. 특히 크기가 큰 장애물체나 중앙분리대와 같은 연속적인 장애물체에 대한 추출이 어렵다. 이를 해결하기 위하여 주변 상황 영향을 적게 받는 도로 특징 정보를 새로운 장애물체의 유무 판단 기준으로 사용한다. 도로 특징 정보는 V-시차 맵 상에서 특정 열에 장애물체가 많이 존재하는 상황에서도 전체적인 그 특징을 잘 유지함으로 그 강건성이 높아 새로운 판단기준으로 적합하다. 그리고 V-시차 맵 상에서 도로 특징 정보를 쉽게 추출하기 위하여 먼저 지역 최대 빈도 값을 이용하여 이진 V-시차 맵을 생성한다. 그리고 기존 중간 값과 비교하여 도로 특징 정보가 아닌 부분은 제거하고, 마지막으로 보간을 통하여 최종 도로 특징 정보를 추출한다. 이를 시차 맵의 각 행과 비교하여 장애물체 영역을 검출한다. 또한 장애물체 영역 검출 성능을 향상시키기 위하여 검출 단계에서 발생한 노이즈를 제거하기 위한 후처리 과정도 제안한다. 그리고 실제 도로 영상에 적용한 실험을 통하여 제안한 알고리즘이 기존 방법에 비해 장애물체 검출 성능이 우수함을 보인다.

내용기반 이미지 검색시스템을 위한 형태 정보 추출에 관한 연구 (A Study on the Shape Feature Extraction for Content-based Image Retrieval System)

  • 윤후병;황호전;서정원;두길수;이신원;정성종;안동언
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.265-267
    • /
    • 1998
  • 본 논문은 내용기반 이미지 검색시스템에서 사용하는 특징벡터들 중에서 하나인 형태 특징벡터를 추출하는데 초점을 맞쳤다. 특히 다양한 방향으로 회전된 영상의 형태를 수용할 수 있는 모멘트 정보를 영상의 형태 특징벡터로 사용하였다. 그 결과 영상과 회전되지 않은 영상간의 차이값이 0에 가까워 유사성이 아주 좋음을 알 수 있었다.

관련성 귀환을 가진 질감 기반의 영상검색 (Texture-based Image Retrieval with Relevance Feedback)

  • 이신주;정성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.362-364
    • /
    • 2000
  • 본 본문에서는 간단하면서 효과적인 관련성 귀환을 가진 영상 검색시스템에 대하여 연구하였다. 먼저 영상 데이터베이스 내에 있는 영상들에 대하여 Gabor Wavelet 변환을 이용하여 질감특징을 추출하고, 추출한 특징값을 다양한 형태로 영상검색에 이용하였다. 초기 검색결과에 대하여 관련성 귀환을 영상 검색시스템에 적용하고, 이를 기존의 관련성 귀환을 가진 시스템과 비교하였다. 16종류의 512개의 영상으로 구성된 영상 데이터베이스에 대하여 실험한 결과, 제한된 방법은 INRIA의 방법보다 각 귀환단계에서 약 7~8%의 높은 검색 효율을 보였다.

  • PDF

여현변환 계수를 이용한 이미지 탐색 알고리즘 (A Image Search Algorithm using Coefficients of The Cosine Transform)

  • 이석한
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.13-21
    • /
    • 2019
  • 내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.

신경망을 이용한 사람의 텍스쳐간 유사도 지각의 모의실험 (Simulation of Human Perception of Similarity between Textures Using Neural Network)

  • 임도형;정찬섭;이일병
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 춘계학술발표 논문집
    • /
    • pp.198-204
    • /
    • 1998
  • 텍스쳐는 그 정의화 특징이 명확하지 않은 패턴이며, 무한한 변형에 따른 무한한 수의 텍스쳐가 존재한다. 이로 인해 사람의 텍스쳐 지각에 관한 연구에 어려움이 있다. 본 논문에서는 신경망으로 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각을 모의실험하였다. 쌍별비교와 비교판단법칙을 사용하여 사람이 지각하는 텍스쳐의 특징값과 텍스쳐간의 유사도 값을 구하였다. 구한 값을 바탕으로 신경망의 일종인 다층퍼셉트론을 사용하여 특징 추출기와 유사도 특정기를 구현하여 모의 실험하였다. 신경망을 사용하여 모의실험한 결과, 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각과 유사한 결과를 얻었다. 이러한 실험결과는 신경망으로 구현된 시스템이 사람의 감성적인 수치를 구하는 방법으로 사용될 수 있음을 보여 준다.

  • PDF