• 제목/요약/키워드: 특이 특징벡터

검색결과 24건 처리시간 0.021초

음성인식에서 특이 특징벡터의 제거에 대한 연구 (A Study on the Removal of Unusual Feature Vectors in Speech Recognition)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.561-567
    • /
    • 2013
  • 음성 인식을 위해 추출되는 특징벡터 중 일부는 드물게 나타나는 특이 패턴이다. 이들은 음성인식 시스템의 훈련에서 파라미터의 과도맞춤을 일으키며, 그 결과 새로운 입력 패턴의 인식을 저해하는 구조적 위험을 초래한다. 본 논문에서는 이러한 특이 패턴을 제거하는 하나의 방법으로서, 어느 크기 이상의 벡터를 제외시켜 음성인식 시스템의 훈련을 수행하는 방법에 대해 연구한다. 본 연구의 목적은 인식률을 저해시키지 않는 한도에서 가장 많은 특이 특징벡터를 제외시키는 것이다. 이를 위하여 우리는 하나의 절단 파라미터를 도입하고, 그 값의 변화가 FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model)을 사용한 화자독립 음성 인식에 미치는 영향을 조사하였다. 실험 결과, 인식률을 저하시키지 않는 특이 특징벡터의 수가 3%~6% 정도임을 확인하였다.

3축 가속도 센서 데이터에 중력 방향 가중치를 사용한 낙상 인식 알고리듬 (Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data)

  • 김남호;유윤섭
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.254-259
    • /
    • 2013
  • 중력 방향에 대한 가중치를 적용한 3축 가속도 센서 데이터를 낙상 특징 변수로 사용해서 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 기존에 낙상인식에 많이 사용되는 변수인 3축 가속도의 벡터 합(Sum Vector Magnitude, SVM)과 새롭게 정의한 변수인 중력방향가중치를 적용한 3축 가속도의 벡터 합(Gravity-weighted Sum Vector Magnitude, GSVM)를 포함한 다섯 가지 낙상특징변수를 은닉 마르코프 모델에 적용하여 낙상 인식률을 평가하였다. 실험을 통해 얻은 가장 좋은 결과는 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수를 적용한 결과이고 100% 민감도(sensitivity)와 97.96% 특이성(specificity)를 얻었다. 이것은 단순 3축 가속도의 벡터 합 변수에 비해 민감도는 5.2%와 특이성은 4.5% 정도 향상되었다. 단순히 운동량만을 표현하는 3축 가속도의 벡터 합 변수에 비해 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수가 낙상의 움직임에 대한 특징을 잘 표현하기 때문에 높은 인식률을 나타내었다.

실시간 얼굴인식을 위한 빠른 Gabor 특징 추출 (Fast Gabor Feature Extraction for Real Time Face Recognition)

  • 조경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.597-600
    • /
    • 2007
  • 얼굴은 개인의 신원확인을 위하여 중요한 생체부분이다. 하지만 얼굴인식은 고차원적인 패턴인식의 문제이다. 저해상도 얼굴영상 조차도 대단히 큰 특징공간을 생성한다. 고유공간기반 얼굴인식은 고차원적인 패턴인식의 문제를 보다 낮은 차원으로 줄여서 얼굴인식을 하는 방법이다. 본 연구의 목적은 실시간 얼굴인식을 위하여 빠른 특징 추출방법을 제공하는 것이다. 먼저, 입력된 얼굴 영상에서 주성분분석을 수행하여 고유벡터와 고유값을 생성하고, 생성된 고유벡터의 특이점에 Gabor 필터를 적용하여 특징벡터를 구성한 후에 앞에서 구해진 고유값을 곱하여 특징을 추출하는 방법을 제안한다. 본 연구에서는 ORL 데이터베이스를 이용하여 실험하였다.

  • PDF

선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식 (Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers)

  • 오병주
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.41-48
    • /
    • 2005
  • 이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.

  • PDF

유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교 (Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor)

  • 강명수;뉘엔 투 낙;김용민;김철홍;김종면
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.446-460
    • /
    • 2011
  • 최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.

특이 벡터 영역에서 디지털 영상 워터마킹 방법 (Digital Image Watermarking Scheme in the Singular Vector Domain)

  • 이적식
    • 융합신호처리학회논문지
    • /
    • 제16권4호
    • /
    • pp.122-128
    • /
    • 2015
  • 멀티미디어 정보들이 인터넷 공간에 확산됨에 따라서 원래 정보 소유자의 권리 보호와 원본 증명 등의 문제가 대두되고 있다. DCT, DFT, DWT 등의 여러 영상 변환들을 이용하여 소유권의 징표로 워터마크를 원본 영상에 삽입하는 방법을 많이 사용하였으나, 보다 최근에는 수치해석 분야에 많이 쓰이는 SVD(Singular Value Decomposition) 방법을 부가적으로 사용하고 있다. 본 논문에서는 SVD의 특이 벡터와 동시에 Gabor 코사인과 사인 변환을 이용하여 디지털 표지 영상에 워터마크를 삽입하고 추출하는 방법을 제안한다. 워터마크가 삽입된 영상에 잡음, 공간 변형, 필터링, 압축 등의 공격을 가한 후, GCST-SVD의 워터마크 추출 알고리즘을 적용한다. 워터마킹 성능을 평가하기 위해서 삽입한 워터마크와 추출한 워터마크 사이의 유사성 척도로써 정규화한 상관계수값을 측정한다. 또한 추출한 워터마크 영상으로부터 시각적으로 직접 원본 워터마크인지를 판단한다. 가장 낮은 수직 교류 주파수 대역에 워터마크를 삽입한 실험으로부터 SVD의 특이 벡터를 이용한 워터마킹 방법은 대부분 공격에서 0.9이상의 큰 상관값과 삽입한 워터마크의 특징들을 시각적으로 파악할 수 있었다.

웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석 (Steganalysis Using Histogram Characteristic and Statistical Moments of Wavelet Subbands)

  • 현승화;박태희;김영인;김유신;엄일규
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.57-65
    • /
    • 2010
  • 본 논문은 스테가노그래피 알고리즘에 대한 블라인드 스테그분석 기법을 제안한다. 제안하는 스테그분석기법은 두 가지 형태의 특징 벡터를 추출한다. 첫 번째로, 영상에 정보를 은닉한 후 웨이블릿 부대역의 히스토그램 특성이 변한다는 것을 관찰하고 히스토그램의 위치 변화를 특징으로 이용한다. 두 번째로, 웨이블릿 특성 함수의 통계적 모멘트를 특징으로 이용한다. 첫번째 형태의 특징은 영상을 3-레벨 웨이블릿 변환하여 9개의 고주파 부대역에서 각각 하나의 특징을 추출하여 총 9개의 특징 벡터 얻는다. 두 번째 형태의 특징은 각 부대역별로 3차 모멘트까지 추출하여 39개의 특징 벡터를 얻는다. 총 48개의 특징 벡터를 교사학습을 이용하여 학습한 후 스테고 영상과 커버 영상을 분류한다. 다층 퍼셉트론 신경망 분류기를 이용하여 두 가지 형태의 특징을 입력으로 하여 삽입 데이터의 존재유무를 판별한다. 제안 방법의 성능을 평가하기 위하여 CorelDraw 데이터베이스 영상이 사용되었고 LSB 방법과 SS방법, blind SS방법, F5방법으로 다양한 삽입률의 스테고 영상을 생성하여 실험한다. 민감도와 특이도, 에러율, ROC 커브 면적 등을 이용하여 제안 방법이 기존의 스테그분석 방법보다 삽입 정보 유무를 검출하는데 효과적임을 보여준다.

디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정 (Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.79-84
    • /
    • 2015
  • 디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1~6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 ($3{\times}3$) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류 (Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers)

  • 홍진혁;민준기;조웅근;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.886-895
    • /
    • 2006
  • 지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

디지털 영상 픽셀값의 경사도를 이용한 Downscaling Forgery 검출 (Downscaling Forgery Detection using Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.47-52
    • /
    • 2016
  • 스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ($3{\times}3$) 영상과 미디언필터링 ($3{\times}3$) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.