• Title/Summary/Keyword: 특성 모델 검증

Search Result 2,151, Processing Time 0.037 seconds

Model Verification of Decision Assisting Nitrogen Expert System NES to Illinois Cornfields (일리노이주의 옥수수 포장에서 질소질 비료의 적정시용에 대한 전문가체계의 검증)

  • Kim, Won-Il;Jung, Goo-Bok;Huck, M.G.;Kim, Kil-Yong;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.64-70
    • /
    • 2001
  • To verify the newly developed decision assisting expert system for nitrogen fertilizer application NES to Illinois cornfields, a couple of N rate studies from Dr. Howard and five Illinois Agricultural Experiment Stations were applied. Four types of recommendations including the current Illinois recommendation, Hoeft recommendation, NES, and maximum economic recommendation were compared with each other for the crop yields, profits, recovery rate, and N losses to cornfields. The N rate of NES recommendation, considering productivity index (PI), soil organic matter content (SOM), and pre-sidedressing nitrate concentration (PSNT) level, was the lowest in comparison to those of other recommendations. However, N recovery rate in NES was generally higher and the resulting N loss was lower than others. But, adherence to the recommendations may also reduce farmers income if environmental expense did not considered. Therefore, NES will be more effective by adding the factors including environmental expense, tillage systems, crop rotation, and other agricultural management parameters.

  • PDF

A Problematic Bubble Detection Algorithm for Conformal Coated PCB Using Convolutional Neural Networks (합성곱 신경망을 이용한 컨포멀 코팅 PCB에 발생한 문제성 기포 검출 알고리즘)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.409-418
    • /
    • 2021
  • Conformal coating is a technology that protects PCB(Printed Circuit Board) and minimizes PCB failures. Since the defects in the coating are linked to failure of the PCB, the coating surface is examined for air bubbles to satisfy the successful conditions of the conformal coating. In this paper, we propose an algorithm for detecting problematic bubbles in high-risk groups by applying image signal processing. The algorithm consists of finding candidates for problematic bubbles and verifying candidates. Bubbles do not appear in visible light images, but can be visually distinguished from UV(Ultra Violet) light sources. In particular the center of the problematic bubble is dark in brightness and the border is high in brightness. In the paper, these brightness characteristics are called valley and mountain features, and the areas where both characteristics appear at the same time are candidates for problematic bubbles. However, it is necessary to verify candidates because there may be candidates who are not bubbles. In the candidate verification phase, we used convolutional neural network models, and ResNet performed best compared to other models. The algorithms presented in this paper showed the performance of precision 0.805, recall 0.763, and f1-score 0.767, and these results show sufficient potential for bubble test automation.

Analysis of BWIM Signal Variation Due to Different Vehicle Travelling Conditions Using Field Measurement and Numerical Analysis (수치해석 및 현장계측을 통한 차량주행조건에 따른 BWIM 신호 변화 분석)

  • Lee, Jung-Whee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • Bridge Weigh-in-Motion(BWIM) system calculates a travelling vehicle's weight without interruption of traffic flow by analyzing the signals that are acquired from various sensors installed in the bridge. BWIM system or data accumulated from the BWIM system can be utilized to development of updated live load model for highway bridge design, fatigue load model for estimation of remaining life of bridges, etc. Field test with moving trucks including various load cases should be performed to guarantee successful development of precise BWIM system. In this paper, a numerical simulation technique is adopted as an alternative or supplement to the vehicle traveling test that is indispensible but expensive in time and budget. The constructed numerical model is validated by comparison experimentally measured signal with numerically generated signal. Also vehicles with various dynamic characteristics and travelling conditions are considered in numerical simulation to investigate the variation of bridge responses. Considered parameters in the numerical study are vehicle velocity, natural frequency of the vehicle, height of entry bump, and lateral position of the vehicle. By analyzing the results, it is revealed that the lateral position and natural frequency of the vehicle should be considered to increase precision of developing BWIM system. Since generation of vehicle travelling signal by the numerical simulation technique costs much less than field test, a large number of test parameters can effectively be considered to validate the developed BWIM algorithm. Also, when artificial neural network technique is applied, voluminous data set required for training and testing of the neural network can be prepared by numerical generation. Consequently, proposed numerical simulation technique may contribute to improve precision and performance of BWIM systems.

Verification of a Calibration Technique for a Full-Polarimetric Scatterometer System at C-band (C-밴드 완전 편파 측정용 스캐터미터 시스템 보정 기술 검증)

  • Park, Sin-Myeong;Go, Joo-Seoc;Joo, Jeong-Myeong;Kim, Hee-Young;Kim, Ju-Hui;Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1196-1203
    • /
    • 2012
  • This paper presents a study on the calibration of a C-band HPS(Hongik Polarimetric Scatterometer) system using the DMMCT(Differential Mueller Matrix Calibration Technique). For calibration of the polarimetric scatterometer system, a fully-polarimetric antenna pattern(magnitudes and phase-differences) of the antenna main-beam is measured using a conducting sphere at anechoic chamber. The polarimetric scatterometer system could be accurately calibrated after retrieving its distortions using the DMMCT. Unlike a single-polarimetric system, in a fully-polarimetric system, not only backscattering coefficients but also phase differences are important parameters. This calibrated HPS system can be used to measure accurate Mueller matrices of bare soil surfaces, rice paddies, and vegetation fields. The phase-difference parameters as well as the backscattering coefficients for co- and cross-polarizations can then be obtained. The accuracy of calibration was verified by comparing the measured backscattering coefficients with a scattering model. The measured polarization response of a plowed bare field was also compared with the polarization response which was synthesized using a polarimetric scattering model for verifying the calibration technique.

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening (지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구)

  • Im, Eun Sub;Kim, Jong Eun;Kim, Jee Hwan;Park, Young Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.132-142
    • /
    • 2019
  • Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.

Effects of Preference for Science and Self-Directed Learning Ability of the Science Puppet Show Program Developed as a STEAM Education Model (융합인재교육 모델로서 과학인형극 프로그램의 과학선호도와 자기주도적 학습능력에 대한 효과)

  • Ha, Ju Il;Kim, Kyoung Soo
    • Korea Science and Art Forum
    • /
    • v.21
    • /
    • pp.437-449
    • /
    • 2015
  • The research aims to verify the effects of preference for science and self-directed learning ability of the science puppet show program that the researcher has developed as a STEAM education model. The results for conducting the survey with the same questionnaire before and after the program targeting the students showed that the science puppet show had effects on increasing the science related assignment performance will of the behavioral will among the three sub-dimensions including emotional respond, value cognition and behavioral will, but there was no effect on overall aspects of science preference. It can be interpreted as reflecting the characteristics of the scientific talents who already have a high level of preference for science. In addition, the three sub-dimensions including the cognitive regulation, motivational regulation and behavioral regulation had effects on the self-directed learning ability. Especially it had great effects on the directed learning ability of cognitive regulation, learning motivation of motivational regulation, tool application of behavioral regulation, and cooperation capacity which were greater for female students than male students. It is judged that the three-staged science puppet show program including the 'content integrating stage' that the students integrate the curriculum contents, 'integrated mission stage' of solving the visualization, auralization and performance missions by themselves, and 'process integration stage' of making the stage piece all together.

A Study on Technology Commercialization for National R&D Products : A Case Study on Korean Land Spatialization Program (국가R&D사업에서의 연구 성과 사업화 방안에 대한 연구 : 지능형국토정보기술혁신사업의 사례 분석)

  • Bae, Sang-Keun;Hong, Jin-Won;Jung, Yeun-Jae;Park, Seung-Wook;Kim, Byung-Guk
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.81-92
    • /
    • 2012
  • Recently, it is very important to create economic value as well as develop core algorithms and technologies in the field of R&D. Various R&D projects make an effort to do the technology commercialization of their results and, as part of efforts, many studies on business model(BM) are conducted to create economic benefits in using the developed technology. However, it is difficult to use the general business model methodologies, which are usually utilized for companies, to the government's research due to different processes and characteristics between them. And for the practical application of business models, it needs to systematize conceptual business models in technical perspective through technical architecture analysis. In this study, a business model development process and a technical architecture analysis for national R&D project is developed for the technology commercialization. In addition, the process is applied to Korean Land Spatialization Program (KLSP) organized by Ministry of Land, Transport and Maritime Affairs to verify the feasibility of its practical application.

Simplified Approximation Method of the Multi-Compartments Model on the Migration of Contaminant through Unsaturated Zone (불포화대에서 오염물질 이동현상에 대한 다중구획 모델의 단순 근사방법)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • A conventional single compartment model cannot simulate reasonably the migration phenomenon of contaminants through unsaturated zone, due to the intrinsic unrealistic assumption of the compartment model that contaminants entering a compartment are immediately and uniformly mixed. Although, a multi-compartments model, in which even physically identical layer is divided into multiple compartments, may be used for explaining the retardation of contaminant mass flux along with increasing number of compartments, its numerical modeling is usually time-consuming and appropriate analytical solutions have not been reported yet. In order to improve the conventional compartment models on contaminant migration through unsaturated zone, a series of analytical solutions for multi-compartments model were derived and a generalized constraint under which the results from multi-compartments model can be simply approximated by single compartment model was proposed. The simplified approximation method was verified by a simple numerical analysis on the constraint under hypothetical conditions. It was also proved that the influent contaminant transfer rate from the bulk unsaturated zone can be generally represented into a time-dependent nominal transfer rate rather than a constant. In addition, the nominal transfer rate turned out to be very sensitive to the contaminant transfer rate between compartments in unsaturated zone, but to be almost insensitive to the transfer rate from contaminated zone. It is expected that the simplified approximation method developed in this study can be used for rapid and reasonable estimation of the migration phenomenon of contaminant through unsaturated zone, instead of time-consuming multi-compartments modeling.

  • PDF

Development of Business Process Model for Overseas Natural Gas Pipeline Project at the Project Planning Phase (해외 천연가스 파이프라인 사업 진출을 위한 사업계획단계 의사결정 프로세스 모델 구축)

  • Sin, Eonill;Han, Seung-Heon;Jang, Woosik;Lee, Yong-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.473-481
    • /
    • 2012
  • Demand of Natural Gas (NG) consumption is continuously increasing by long service life and low environmental impact than other fossil fuels. Because of this reasons, Gas wells exploration and huge LNG plant construction project are being boosted world-widely. Especially, overseas NG pipe-line projects are emerging by considering safe and efficiency at the inter-country sections. At the same time, Korean contractors are being achieved to record-breaking performance at 2011's overseas construction market and 80% of new-record was attained from overseas plant construction projects. Nevertheless, Korean contractors are behind than overseas leading contractors by geographical distance from gas wells and concentrated demand for storage plant. In these reasons, this paper aims to develop the standardized business process model(BPM) for overseas NG pipe-line project at project planning phase to support the project entry. To this aim, first of all, extract the BPM through the broad literature and overseas construction market review and domestic/overseas pipe-line project analysis. Second, Test-bed was performed to confirm of practical applicability by 4 experts. And then 15 experts survey were performed to validate the usability and effectiveness of BPM for overseas NG pipe-line project. Consequently, if Korean contractors are using this BPM with their own know-how and experiences, it will be returned to more reasonable and rational references for decision making in overseas NG pipe-line project.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.