A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Due to the characteristics of a data stream, it is impossible to save all the data elements of a data stream. Therefore it is necessary to define a new synopsis structure to store the summary information of a data stream. For this purpose, this paper proposes a cuboid prefix tree that can be effectively employed in evaluating an iceberg query over data streams. A cuboid prefix tree only stores those itemsets that consist of grouping attributes used in GROUP BY query. In addition, a cuboid prefix tree can compute multiple iceberg queries simultaneously by sharing their common sub-expressions. A cuboid prefix tree evaluates an iceberg query over an infinitely generated data stream while efficiently reducing memory usage and processing time, which is verified by a series of experiments.
Data mining is an interest area in all field around us not in any specific areas, which could be used applications in a number of areas heavily. In other words, it is used in the decision-making process, data and correlation analysis in hidden relations, for finding the actionable information and prediction. But some of the data sets contains many missing values in the variables and do not exist a large number of records in the data set. In this paper, missing values are handled in accordance with the model tree algorithm. Cholesterol value is applied for predicting. For the performance analysis, experiments are approached for each treatment. Through this, efficient alternative is presented to apply the missing data.
As the growth of database volume, it has required a need and an opportunity of data analysis and extracting knowledge from database. Data mining method is the representative example. The size of most minable data set is huge, and stored in a database. To implement effective mining function, we must extract minable data set to be analyzed from existing relational database, and it must be managed with its generalized information. In this paper, the new mining operator is defined in a similar manner to the existing SQL operators and SQL is extended to extract data subset from relations and to generalize it using domain-oriented method. The background knowledge includes attribute values, which will be mind and generalized information, and it is managed as the same structure with a relation in relational database. These functions are implemented by defining some SQL - like operators and aggregated functions, and we describe the expressive powers of these new operators and functions through examples.
Kim, Joo-Chang;Jung, Hoill;Yoo, Hyun;Chung, Kyungyong
Journal of the Korea Convergence Society
/
v.9
no.3
/
pp.53-59
/
2018
In this paper, we propose a sequence mining based manufacturing process using a decision model in cognitive factory. The proposed model is a method to increase the production efficiency by applying the sequence mining decision model in a small scale production process. The data appearing in the production process is composed of the input variables. And the output variable is composed the production rate and the defect rate per hour. We use the GSP algorithm and the REPTree algorithm to generate rules and models using the variables with high significance level through t-test. As a result, the defect rate are improved by 0.38% and the average hourly production rate was increased by 1.89. This has a meaning results for improving the production efficiency through data mining analysis in the small scale production of the cognitive factory.
Journal of the Korea Society of Computer and Information
/
v.17
no.2
/
pp.197-206
/
2012
A exisiting recommedation system using association rules has the problem, such as delay of processing speed from a cause of frequent scanning a large data, scalability and accuracy as well. In this paper, using a Implicit method which is not used user's profile for rating, we propose the personalized recommendation system which is a new method using the FP-tree mining based on RFM. It is necessary for us to keep the analysis of RFM method and FP-tree mining to be able to reflect attributes of customers and items based on the whole customers' data and purchased data in order to find the items with high purchasability. The proposed makes frequent items and creates association rule by using the FP-tree mining based on RFM without occurrence of candidate set. We can recommend the items with efficiency, are used to generate the recommendable item according to the basic threshold for association rules with support, confidence and lift. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.
Proceedings of the Korean Information Science Society Conference
/
2007.06b
/
pp.27-31
/
2007
생물학적 서열 데이터는 크게 DNA 염기 서열과 단백질 아미노산 서열이 있다. 이들 서열은 일반적으로 많은 수의 항목들을 가지고 있어 그 길이가 매우 길다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 부분 연속 서열들이 존재하는데 이들 서열들을 찾아내는 것은 다양한 서열 분석에서 유용하게 사용될 수 있다. 이를 위해 초기에는 Apriori 알고리즘을 기반으로 하는 순차패턴 마이닝 알고리즘들을 활용하는 방법들이 많이 제시되었다. 그중 PrefixSpan 알고리즘은 Apriori기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로부터 서열 패턴을 확장해나가는 방식으로 길이가 긴 연속 서열을 포함하는 생물학적 데이터 서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 원본 데이터베이스보다 크기가 큰 별도의 프로젝션 데이터베이스를 사용함으로서 많은 비용부담이 발생하고 특히 길이가 긴 서열에 대해서는 더욱 효율적이지 못하다. 이에 본 논문에서 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색 성능이 우수함을 증명한다.
시멘틱 웹은 기존의 웹과는 달리 정보의 의미가 정의되고, 이들 간의 의미적 연결을 지원한다는 특징이 있어서, 최근 차세대 웹으로 부각되고 있다. 이러한 의미적 연결을 위해서 시맨틱 웹의 기반인 온톨로지가 필요하다. 온톨로지는 리소스에 대한 메타데이터를 정의하여 의미적 연결이 가능하게 하므로 효율적인 정보 검색이 가능하다. 이 논문에서는 정보 검색의 효율을 증가시키기 위해서 시맨틱 웹의 핵심인 온톨로지 기반의 정보 검색 시스템을 제안한다. 쇼핑 사이트에서 효율적인 마케팅을 위해 사용자의 구매 패턴을 조사하여 고객에게 알맞은 정보 추천을 하기 위한 것을 목적으로 한다. 온톨로지의 구축은 XTM을 기반으로 토픽맵을 이용하였다. 그리고 온톨로지를 기반으로, 사용자의 구매패턴을 찾아서 정확한 정보 전달을 위해서 데이터 마이닝 기법을 이용하였다. 빈발패턴 트리 기법을 기반으로 하는 멀티 레벨 멀티 디멘션 빈발 패턴 마이닝 알고리즘을 이용하여 사용자 패턴을 분석하여 정보 검색에 효율을 기하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.244-246
/
2005
상호작용하는 구조들을 하나의 클래스로 표현하는 데이터 마이닝 툴로서 이머징 패턴(EP)이 최근에 제안되었다. 기존의 클러스터링 알고리즘과 패턴 마이닝 알고리즘은 고차원의 유전자 발현 데이터 흑은 같은 변수들(e.g. genes)을 가지고 실험한 멀티 소스 데이터 분석을 다루기에 부적절하고, 실험 결과를 이해하는 데에 어려움이 있다. 그러나 EP는 분류 트리의 형태로 표현 가능하기 때문에, 다양한 형식의 데이터를 분류하는 패턴들을 빠르고 간단하게 구성하여 데이터 분석이 가능하도록 돕는다. 본 논문에서는 멀티 소스 바이오 데이터에서 분류 절차의 작업을 향상시키기 위하여 EP를 사용하는 간단한 스킴을 제안한다.
네트워크 인프라가 급속히 발전하면서 네트워크 상에서 발생되는 트래픽을 관리하기 위해 마이닝 기법을 적용하려는 여러 연구가 활발히 진행되고 있다. 그러나 기존의 방법들은 DBMS를 이용하여 개개의 플로우를 저장 후 분석하는 방식을 채택함으로써 엄청난 부하와 실시간 마이닝을 어렵게 하는 문제점이 있다. 본 논문에서는 제한된 크기의 메모리를 사용하여 실시간으로 발생하는 네트워크 플로우 데이터 중 빈발한 플로우를 추출하는 방법을 제안한다. 오직 빈발하게 발생하는 플오우만을 메모리에서 모니터링 트리를 사용하여 관리함으로써 메모리를 효율적으로 사용한다. 제안 된 방법은 기존의 방법들과 비교할 때 적은 시스템 부하를 주면서 초고대역폭의 트래픽을 실시간으로 모니터링 할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.66-68
/
2012
적의 주타격 방향은 적 지휘관의 주요 결정사항 중에 하나이다. 이런 적의 주타격 방향에 영향을 미치는 요소들을 분석하여 예측할 수 있다면 전쟁에서 좀 더 유리한 여건을 조성할 수 있을 것이다. 그러나 현재 군에서는 과학적 분석방법이 아닌 분석관 및 지휘관의 경험에 의한 적 주타격 방향 분석이 주를 이루고 있다. 따라서 본 논문에서는 데이터 마이닝의 대표적 방법인 의사결정트리의 C4.5 알고리즘을 사용하여 북한군의 지휘관 결심지도를 분석하였다. 또한 도출된 분류 규칙을 통해 적 주타격 방향 영향요소를 식별하고 영향요소들 간의 관계 및 정도의 수준을 예측하였다. 분석결과 현재 군에서 사용하고 있는 정보와 유사하고 의미 있는 정보를 도출할 수 있었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.