• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.029 seconds

Effective Studying Methods during a School Vacation: A Data Mining Approach (데이타 마이닝을 사용한 방학 중 학습방법과 학업성취도의 관계 분석)

  • Kim, Hea-Suk;Moon, Yang-Sae;Kim, Jin-Ho;Loh, Woong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2007
  • To improve academic achievement, the most students not only participate in regular classes but also take various extra programs such as private lessons, private institutes, and educational TV programs. In this paper, we propose a data mining approach to identify which studying methods or usual life patterns during a school vacation affect changes in the academic achievement. First, we derive various studying methods and life patterns that are thought to be affecting changes in the academic achievement during a school vacation. Second, we propose the method of transforming and analyzing data to apply them to decision trees and association rules, which are representative data mining techniques. Third, we construct decision trees and find association rules from the real survey data of middle school students. We have discovered four representative results from the decision trees. First, for students in the higher rank, there is a tendency that private institutes give a positive effect on the academic achievement. Second, for the most students, the Internet teaming sites nay give a negative effect on the achievement. Third, private lessons that have thought to be making a large impact to the achievement, however, do not make a positive effect on the achievement. Fourth, taking several studying methods in parallel nay give a negative effect on the achievement. In association rules, however, we cannot find any meaningful relationships between academic achievement and usual life patterns during a school vacation. We believe that our approach will be very helpful for teachers and parents to give a good direction both in preparing a studying plan and in selecting studying methods during a school vacation.

Improved Association Rule Mining by Modified Trimming (트리밍 방식 수정을 통한 연관규칙 마이닝 개선)

  • Hwang, Won-Tae;Kim, Dong-Seung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.15-21
    • /
    • 2008
  • This paper presents a new association mining algorithm that uses two phase sampling for shortening the execution time at the cost of precision of the mining result. Previous FAST(Finding Association by Sampling Technique) algorithm has the weakness in that it only considered the frequent 1-itemsets in trimming/growing, thus, it did not have ways of considering mulit-itemsets including 2-itemsets. The new algorithm reflects the multi-itemsets in sampling transactions. It improves the mining results by adjusting the counts of both missing itemsets and false itemsets. Experimentally, on a representative synthetic database, the algorithm produces a sampled subset of results with an increased accuracy in terms of the 2-itemsets while it maintains the same 1uality of the data set.

Intelligent Service Reasoning Model Using Data Mining In Smart Home Environments (스마트 홈 환경에서 데이터 마이닝 기법을 이용한 지능형 서비스 추론 모델)

  • Kang, Myung-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.767-778
    • /
    • 2007
  • In this paper, we propose a Intelligent Service Reasoning (ISR) model using data mining in smart home environments. Our model creates a service tree used for service reasoning on the basis of C4.5 algorithm, one of decision tree algorithms, and reasons service that will be offered to users through quantitative weight estimation algorithm that uses quantitative characteristic rule and quantitative discriminant rule. The effectiveness in the performance of the developed model is validated through a smart home-network simulation.

Cell-based Classification of High-dimensional Large data for Data Mining Application (데이터 마이닝을 위한 대용량 고차원 데이터의 셀-기반 분류방법)

  • 진두석;장재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.192-194
    • /
    • 2000
  • 최근 데이터 마이닝에서 대용량 데이터를 처리하는 응용이 많아짐에 따라, 클러스터링(Clustering) 및 분류(Classification)방법이 중요한 분야가 되고 있다. 특히 분류방법에 관한 기존 연구들은 단지 메모리 상주(memory-resident) 데이터에 대해 한정되며 고차원 데이터를 효율적으로 처리할 수 없다. 따라서 본 논문에서는 대용량 고차원 데이터를 효과적으로 처리할 수 있는 새로운 분류 알고리즘을 제안한다. 이는 데이터들을 차원 공간상의 셀(cell)로 표현함으로써 수치(numerical) 애트리뷰트와 범주(categorical) 애트리뷰트 모두 처리할 수 있는 알고리즘을 제안한다. 아울러, 실험결과를 통해 제안한 알고리즘이 데이터의 양,차원 그리고 속성에 관계없이 분류를 효과적으로 수행함을 보인다.

  • PDF

Recommender System using Context Information and Spatial Data Mining (상황정보와 공간 데이터 마이닝 기법을 이용한 추천 시스템)

  • Lee Bae-Hee;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.667-669
    • /
    • 2005
  • 유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.

  • PDF

Efficient Mining E-Shopper's Purchase Behavior Based on Maximal Frequent Patterns (최대 빈발 패턴을 이용한 온라인 쇼핑객의 구매규칙에 대한 효율적인 마이닝)

  • Jo, Jae-Hyun;Karim, Md. Rezaul;Jeong, Byeong-Soo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1357-1360
    • /
    • 2012
  • 온라인 쇼핑객의 구매 규칙을 예견하기 위해 기업은 데이터 마이닝 기법을 사용하는데, 최대 빈발 패턴은 특정한 고객의 구매 원칙을 드러내기 때문에, 최대 빈발 패턴에 대한 마이닝은 최근 시장 분석에서 핵심적 이슈가 되고 있다. 본 논문에서 우리는 오리지널 데이터세트로부터 널 트랜잭션(Null Transaction)을 제거한 후, 최대 빈발 패턴을 발생시키기 위한 BRE-트리(Bottom-up Row Enumeration Tree)를 적용시켰다. 다음으로 온라인 거래 데이터베이스에서 고객 구매 규칙의 마이닝을 위한 항목들 간의 거리를 계산하기 위해, SCL(Sequence Close Level)의 변형된 버전을 사용하였다. 실험결과는 합리적인 시간 내에 고객의 구매 규칙을 더 정확하게 예견할 수 있음을 보여준다.

Improvement of an algorithm for tree-editing distance measure regarding the features of HTML (HTML특성을 고려한 트리 편집 거리 측정 알고리즘의 개선)

  • Kim, Yeon-Jung;Park, Jea-Hyun;Choi, Joong-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.718-720
    • /
    • 2005
  • 웹 문서를 대상으로 하는 정보 추출이나 웹 마이닝에 관한 연구가 활발히 진행되면서 특히, 웹에서 나타나는 구조적 패턴을 이용해 정보를 추출하는 방법에 대한 연구가 이루어 지고 있다. 기존의 연구는 HTML을 단순 문자열로 취급하였으나 연구가 거듭됨에 따라 트리로 접근하는 방안에 대해 논의가 되었으며 성능 또한 우수한 것으로 평가되고 있다. 하지만, 기존의 트리 편집 거리의 기법은 모든 노드가 동일한 값을 가진다는 가정하에 진행되는 것으로 HTML의 특성과는 맞지 않다. HTMI은 브라우저에 정보를 보여주기 위한 도구이며 실제 브라우저에 보여지는 내용의 비율이 트리에서의 노드의 비율과 항상 같은 것은 아니기 때문이다. 이 논문에서는 위와 같은 HTML의 특성을 이용하여 노드가 가진 정보의 크기에 따라 서로 다른 비율의 기여도를 부여하고, 이를 고려한 개선된 트리 편집 거리 측정 알고리즘을 이용하여 좀더 나은 패턴 추출 방법을 제안하고자 한다.

  • PDF

High-Speed Search Mechanism based on B-Tree Index Vector for Huge Web Log Mining and Web Attack Detection (대용량 웹 로그 마이닝 및 공격탐지를 위한 B-트리 인덱스 벡터 기반 고속 검색 기법)

  • Lee, Hyung-Woo;Kim, Tae-Su
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1601-1614
    • /
    • 2008
  • The number of web service users has been increased rapidly as existing services are changed into the web-based internet applications. Therefore, it is necessary for us to use web log pre-processing technique to detect attacks on diverse web service transactions and it is also possible to extract web mining information. However, existing mechanisms did not provide efficient pre-processing procedures for a huge volume of web log data. In this paper, we proposed both a field based parsing and a high-speed log indexing mechanism based on the suggested B-tree Index Vector structure for performance enhancement. In experiments, the proposed mechanism provides an efficient web log pre-processing and search functions with a session classification. Therefore it is useful to enhance web attack detection function.

  • PDF

Text Pattern Search Based on User Profile using Prefix Tree (전위 트리를 이용한 사용자 프로파일 기반의 문서 패턴 검색 기법)

  • Woo, Ho-Jin;Lee, Won-Suk
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.533-536
    • /
    • 2005
  • 기하급수적으로 증가하는 데이터 중에서 개개인 사용자에게 적합한 정보를 추출하여 제공해야 할 필요성이 증대되고 있다. 본 논문에서는 대용량의 문서 집합으로부터 사용자가 원하는 특정 주제의 정보를 정확하게 추출해 낼 수 있는 문서 패턴 검색 방법을 제시한다. 사용자 선호도를 정확하게 반영할 수 있도록 전위 트리를 기반으로 사용자의 키워드 마이닝 프로파일을 생성하고, 이를 이용하여 문서 집합에서 매치된 패턴을 찾아내는 방법을 제안하였다. 생성된 프로파일을 이용한 검색 기법의 효용성을 실험을 통해 검증하였다.

  • PDF

Adaptive Frequent Pattern Algorithm using CAWFP-Tree based on RHadoop Platform (RHadoop 플랫폼기반 CAWFP-Tree를 이용한 적응 빈발 패턴 알고리즘)

  • Park, In-Kyu
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.229-236
    • /
    • 2017
  • An efficient frequent pattern algorithm is essential for mining association rules as well as many other mining tasks for convergence with its application spread over a very broad spectrum. Models for mining pattern have been proposed using a FP-tree for storing compressed information about frequent patterns. In this paper, we propose a centroid frequent pattern growth algorithm which we called "CAWFP-Growth" that enhances he FP-Growth algorithm by making the center of weights and frequencies for the itemsets. Because the conventional constraint of maximum weighted support is not necessary to maintain the downward closure property, it is more likely to reduce the search time and the information loss of the frequent patterns. The experimental results show that the proposed algorithm achieves better performance than other algorithms without scarifying the accuracy and increasing the processing time via the centroid of the items. The MapReduce framework model is provided to handle large amounts of data via a pseudo-distributed computing environment. In addition, the modeling of the proposed algorithm is required in the fully distributed mode.