Due to the characteristics of a data stream, it is very important to confine the memory usage of a data mining process regardless of the amount of information generated in the data stream. For this purpose, this paper proposes the Prime pattern tree(PPT) for finding frequent itemsets over data streams with using the confined memory space. Unlike a prefix tree, a node of a PPT can maintain the information necessary to estimate the current supports of several itemsets together. The length of items in a prime pattern can be reduced the total number of nodes and controlled by split_delta $S_{\delta}$. The size and the accuracy of the PPT is determined by $S_{\delta}$. The accuracy is better as the value of $S_{\delta}$ is smaller since the value of $S_{\delta}$ is large, many itemsets are estimated their frequencies. So it is important to consider trade-off between the size of a PPT and the accuracy of the mining result. Based on this characteristic, the size and the accuracy of the PPT can be flexibly controlled by merging or splitting nodes in a mining process. For finding all frequent itemsets over the data stream, this paper proposes a PPT to replace the role of a prefix tree in the estDec method which was proposed as a previous work. It is efficient to optimize the memory usage for finding frequent itemsets over a data stream in confined memory space. Finally, the performance of the proposed method is analyzed by a series of experiments to identify its various characteristics.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.395-397
/
1998
현재 데이터마이닝과 관련하여 많은 주제들이 다루어지고 있다. 하지만, 전체적인 마이닝 시스템과 관련하여 마이닝 질의 언어 및 효율적인 질의 처리 방식에 대한 체계적인 연구는 충분하지 못한 것 같다. 따라서 본 논문에서는 과거 구현된 바 있는 마이닝 질의 처리기를 기반으로 하여 질의처리의 융통성을 제공하며, 효율적인 질의 처리를 취한 방법론에 대해 다루고자 한다. 과거 구현되었던 마이닝 질의 처리기는 데이터웨어하우스에 있는 primitive 데이터들을 마이닝 시스템에서 사용할 수 있도록 추출하여 보여주는 역할을 했는데, 단순히 primitive 단위의 데이터들에 대한 접근 뿐 아니라, 현재 데이터마이닝 분야에서 연구 중에 있는 개념 계층이라는 구조를 이용하여 일반화된 데이터 및 에트리뷰트들에 대한 계층적인 정보를 이용하여 체계적이며, 효율적인 마이닝 질의 처리를 가능하게 하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.200-204
/
2007
최근 유비쿼터스 환경의 발달로 인해 사용자 중심의 유비쿼터스 기술이 활발히 연구되고 있다. 이에 따른 각종 응용 분야가 활발히 연구 중이며, 그 중에서 특히 U-Health 기술이 주목받고 있다. U-Health 기술은 질병의 치료라는 전통적인 관점의 의료 서비스에서 벗어나 건강한 상태의 지속적인 관리와 질병의 예방이라는 적극적이고 확장된 개념으로 발전해가고 있다. 건강상태를 관리하고 진단하기 위해서는 기존의 진단데이터를 효율적으로 관리하고, 그것을 토대로 하여 유용한 정보를 얻어 낼 수 있는 방법이 필요하다. 지금까지는 데이터를 처리하기 위하여 통계적인 수치나 전문가에 의한 전문지식을 토대로 하는 방법을 사용하고 있다. 그러나, 건강상태를 관리하고 진단을 목적으로 하는 시스템에서는 높은 정확성이 보장되어야 한다. 또한 유비쿼터스 환경의 특성상 적은 메모리의 사용과 빠른 마이닝 속도가 수반되어야 한다. 본 논문에서는 튜플기반의 진단데이터들을 마이닝하여 진단패턴을 뽑아내는 의료 진단 마이닝 알고리즘을 제안한다. 본 알고리즘은 진단패턴정보의 정확성을 높일 수 있는 장점을 가지며, 튜플기반의 데이터들을 트리 구조로 구성함으로써 마이닝 속도를 향상시킨다. 더 나아가 트리 구조의 컴팩트한 데이터 구조로 메모리 적재가 용이하다. 이는 센서가 부착된 개별 사용자로부터 실시간으로 들어오는 건강상태와 진단패턴과의 비교, 분석을 가능하게 함으로써 보다 정확하고 빠른 진단결과를 내려줄 수 있는 의사결정시스템의 사용에 적합하다.
Generally, data mining is the process of analyzing data from different perspectives and summarizing it into useful information that can be used to increase revenue, cuts costs, or both. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. Data mining is one of the fastest growing field in the computer industry. Because of According to computer technology has been improving, Massive customer data has stored in database. Using this massive data, decision maker can extract the useful information to make a valuable plan with data mining. Data mining offers service providers great opportunities to get closer to customer. Data mining doesn't always require the latest technology, but it does require a magic eye that looks beyond the obvious to find and use the hidden knowledge to drive marketing strategies. Automotive market face an explosion of data arising from customer but a rate of increasing customer is getting lower. therefore, we need to determine which customer are profitable clients whom you wish to hold. This paper builds model of customer loyalty detection and analyzes customer buying patterns in automotive market with data mining using decision tree as a quinlan C4.5 and basic statics methods.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.66-71
/
2010
BPMS, ERP, SCM 등 프로세스 인식 정보시스템들이 널리 쓰이게 되면서 프로세스 마이닝에 대한 연구가 활발하게 이루어지고 있다. 프로세스 마이닝은 프로세스가 실행되는 동안 저장된 이벤트 로그로부터 정보를 추출하는 기법이다. 추출된 로그정보는 비즈니스 프로세스의 분석 및 재설계에 사용될 프로세스 모델을 생성하게 된다. 프로세스 마이닝 기법은 프로세스의 자동화 및 기업의 업무정보들을 관리하는 프로세스 기반 정보시스템의 정확성 및 효율성을 위한 중요한 부분을 차지하지만 현재까지의 연구는 생성된 이벤트 로그로부터 프로세스 모델을 재설계하는 프로세스 발견 기법 (Process Discovery Technique)을 적용한 부분에서만 활발히 진행되었다. 프로세스 마이닝은 프로세스 발견 기법 외에도 프로세스 적합성검사 기법 (Process Conformance Checking Technique) 및 프로세스 확장 기법 (Process Extension Technique)이 존재한다. 이들은 많은 프로세스 발견 기법에 대한 연구들이 진행되고 나서야 최근 프로세스 마이닝의 이슈로 떠오르고 있다. 본 논문에서는 프로세스 적합성 검사를 위해 수집된 이벤트 로그와 기존에 나와 있는 여러 가지 프로세스 발견 알고리즘을 통해 생성된 프로세스를 수치적으로 비교할 수 있는 두 가지 애트리뷰트를 제시하였다.
Since the data is collected from disparate sources in many actual data mining environments, it is common to have data values in different abstraction levels. This paper shows that such multiple abstraction levels of data can cause undesirable effects in decision tree classification. After explaining that equalizing abstraction levels by force cannot provide satisfactory solutions of this problem, it presents a method to utilize the data as it is. The proposed method accommodates the generalization/specialization relationship between data values in both of the construction and the class assignment phase of decision tree classification. The experimental results show that the proposed method reduces classification error rates significantly when multiple abstraction levels of data are involved.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.44
no.1
/
pp.71-79
/
2007
Recent advances in the internet infrastructure have resulted in a large number of huge Web sites and portals worldwide. These Web sites are being visited by various types of users in many different ways. Among all the web page access sequences from different users, some of them occur so frequently that may need an attention from those who are interested. We call them frequent access patterns and access sequences that can be frequent the candidate patterns. Since these candidate patterns play an important role in the incremental Web mining, it is important to efficiently generate, add, delete, and search for them. This thesis presents a novel tree structure that can efficiently store the candidate patterns and a related set of algorithms for generating the tree structure, adding new patterns, deleting unnecessary patterns, and searching for the needed ones. The proposed tree structure has a kind of the 3 dimensional link structure and its nodes are layered.
XML 트리 데이터들로부터 빈번 서브 트리들을 추출하는 기존 방법들은 복잡하고 다수의 입력데이터 스캐닝을 필요로 할 뿐만 아니라 빈번 서브 트리를 구하기 위해 에지 하나하나의 조인 작업을 필요로 하였다. 이는 결과적으로 많은 수행 시간을 요한다. 본 논문에서는 트리데이터를 레벨 별로 나누고 이를 마치 채로 거르듯이 필터링하여 특정 수치 이상의 출현 횟수를 가지는 노드들만을 남겨 빠르게 빈번한 서브 트리를 찾고, 이를 이용하여 XML 연관규칙들을 생성하는 방법을 제시한다. 제시된 방법을 위해서 PairSet 이라는 새로운 자료구조를 도입하였으며, 이를 이용하는 크로스필터링 알고리즘을 개발하여 제시하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.27-28
/
2020
이형 데이터 간의 정보 전송과 교환을 가능하게 하는 유연한 트리 구조의 특성은 인터넷 및 IoT 환경에서의 대량 데이터 저장·전송·교환 등에 있어서 XML이나 JSON에서 주요하게 사용된다. 사용성에 있어서는 수월한 반면에, 감추어져 있는 가치있는 정보들을 트리 구조의 대량 데이터들로부터 찾아내는 것은 일반 단순 구조의 데이터에 비해서 훨씬 어려우며 복잡하고 난해한 문제들을 발생시킨다. 이는 트리가 갖는 계층 구조 때문이다. 본 논문에서는 계층 구조를 갖는 대량 트리 데이터들을 보다 단순한 리스트 구조로 변형한 후 해당 구조로부터 가장 자주 발생하는 유용한 정보들을 추출하는 방법을 제시한다.
In this paper, for using emerging patterns to define and analyze the significant difference of safe and non-safe power load lines, and identify which line is potentially non-safe, we proposed an incremental TFP-tree algorithm for mining emerging patterns that can search efficiently within limitation of memory. Especially, the concept of pre-infrequent patterns pruning and use of two different minimum supports, made the algorithm possible to mine most emerging patterns and handle the problem of mining from incrementally increased, large size of data sets such as power consumption data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.