• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.028 seconds

Finding Frequent Itemsets Over Data Streams in Confined Memory Space (한정된 메모리 공간에서 데이터 스트림의 빈발항목 최적화 방법)

  • Kim, Min-Jung;Shin, Se-Jung;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.741-754
    • /
    • 2008
  • Due to the characteristics of a data stream, it is very important to confine the memory usage of a data mining process regardless of the amount of information generated in the data stream. For this purpose, this paper proposes the Prime pattern tree(PPT) for finding frequent itemsets over data streams with using the confined memory space. Unlike a prefix tree, a node of a PPT can maintain the information necessary to estimate the current supports of several itemsets together. The length of items in a prime pattern can be reduced the total number of nodes and controlled by split_delta $S_{\delta}$. The size and the accuracy of the PPT is determined by $S_{\delta}$. The accuracy is better as the value of $S_{\delta}$ is smaller since the value of $S_{\delta}$ is large, many itemsets are estimated their frequencies. So it is important to consider trade-off between the size of a PPT and the accuracy of the mining result. Based on this characteristic, the size and the accuracy of the PPT can be flexibly controlled by merging or splitting nodes in a mining process. For finding all frequent itemsets over the data stream, this paper proposes a PPT to replace the role of a prefix tree in the estDec method which was proposed as a previous work. It is efficient to optimize the memory usage for finding frequent itemsets over a data stream in confined memory space. Finally, the performance of the proposed method is analyzed by a series of experiments to identify its various characteristics.

An Efficient Data Mining Query Processing Using Concept Hierachy (개념계층을 이용한 효율적인 마이닝 질의 처리)

  • 문봉완;김경창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.395-397
    • /
    • 1998
  • 현재 데이터마이닝과 관련하여 많은 주제들이 다루어지고 있다. 하지만, 전체적인 마이닝 시스템과 관련하여 마이닝 질의 언어 및 효율적인 질의 처리 방식에 대한 체계적인 연구는 충분하지 못한 것 같다. 따라서 본 논문에서는 과거 구현된 바 있는 마이닝 질의 처리기를 기반으로 하여 질의처리의 융통성을 제공하며, 효율적인 질의 처리를 취한 방법론에 대해 다루고자 한다. 과거 구현되었던 마이닝 질의 처리기는 데이터웨어하우스에 있는 primitive 데이터들을 마이닝 시스템에서 사용할 수 있도록 추출하여 보여주는 역할을 했는데, 단순히 primitive 단위의 데이터들에 대한 접근 뿐 아니라, 현재 데이터마이닝 분야에서 연구 중에 있는 개념 계층이라는 구조를 이용하여 일반화된 데이터 및 에트리뷰트들에 대한 계층적인 정보를 이용하여 체계적이며, 효율적인 마이닝 질의 처리를 가능하게 하고자 한다.

Efficient Mining for Personalized Medical treatment Diagnosis Service (개인 맞춤형 의료진단 서비스 제공을 위한 효율적인 데이터마이닝 기법)

  • Kaun, Eun-Hee;Lee, Seung-Cheol;Lee, Joo-Chang;Kim, Ung-Mo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.200-204
    • /
    • 2007
  • 최근 유비쿼터스 환경의 발달로 인해 사용자 중심의 유비쿼터스 기술이 활발히 연구되고 있다. 이에 따른 각종 응용 분야가 활발히 연구 중이며, 그 중에서 특히 U-Health 기술이 주목받고 있다. U-Health 기술은 질병의 치료라는 전통적인 관점의 의료 서비스에서 벗어나 건강한 상태의 지속적인 관리와 질병의 예방이라는 적극적이고 확장된 개념으로 발전해가고 있다. 건강상태를 관리하고 진단하기 위해서는 기존의 진단데이터를 효율적으로 관리하고, 그것을 토대로 하여 유용한 정보를 얻어 낼 수 있는 방법이 필요하다. 지금까지는 데이터를 처리하기 위하여 통계적인 수치나 전문가에 의한 전문지식을 토대로 하는 방법을 사용하고 있다. 그러나, 건강상태를 관리하고 진단을 목적으로 하는 시스템에서는 높은 정확성이 보장되어야 한다. 또한 유비쿼터스 환경의 특성상 적은 메모리의 사용과 빠른 마이닝 속도가 수반되어야 한다. 본 논문에서는 튜플기반의 진단데이터들을 마이닝하여 진단패턴을 뽑아내는 의료 진단 마이닝 알고리즘을 제안한다. 본 알고리즘은 진단패턴정보의 정확성을 높일 수 있는 장점을 가지며, 튜플기반의 데이터들을 트리 구조로 구성함으로써 마이닝 속도를 향상시킨다. 더 나아가 트리 구조의 컴팩트한 데이터 구조로 메모리 적재가 용이하다. 이는 센서가 부착된 개별 사용자로부터 실시간으로 들어오는 건강상태와 진단패턴과의 비교, 분석을 가능하게 함으로써 보다 정확하고 빠른 진단결과를 내려줄 수 있는 의사결정시스템의 사용에 적합하다.

  • PDF

Buying Customer Classification in Automotive Corporation with Decision Tree (의사결정트리를 통한 자동차산업의 구매패턴분류)

  • Lee, Byoung-Yup;Park, Yong-Hoon;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.372-380
    • /
    • 2010
  • Generally, data mining is the process of analyzing data from different perspectives and summarizing it into useful information that can be used to increase revenue, cuts costs, or both. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. Data mining is one of the fastest growing field in the computer industry. Because of According to computer technology has been improving, Massive customer data has stored in database. Using this massive data, decision maker can extract the useful information to make a valuable plan with data mining. Data mining offers service providers great opportunities to get closer to customer. Data mining doesn't always require the latest technology, but it does require a magic eye that looks beyond the obvious to find and use the hidden knowledge to drive marketing strategies. Automotive market face an explosion of data arising from customer but a rate of increasing customer is getting lower. therefore, we need to determine which customer are profitable clients whom you wish to hold. This paper builds model of customer loyalty detection and analyzes customer buying patterns in automotive market with data mining using decision tree as a quinlan C4.5 and basic statics methods.

Efficient Method of "Conformance Checking" in Process Mining (프로세스 마이닝에서의 효율적인 적합성 판단 기법)

  • Kim, Gwang-Bok;Heu, Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.66-71
    • /
    • 2010
  • BPMS, ERP, SCM 등 프로세스 인식 정보시스템들이 널리 쓰이게 되면서 프로세스 마이닝에 대한 연구가 활발하게 이루어지고 있다. 프로세스 마이닝은 프로세스가 실행되는 동안 저장된 이벤트 로그로부터 정보를 추출하는 기법이다. 추출된 로그정보는 비즈니스 프로세스의 분석 및 재설계에 사용될 프로세스 모델을 생성하게 된다. 프로세스 마이닝 기법은 프로세스의 자동화 및 기업의 업무정보들을 관리하는 프로세스 기반 정보시스템의 정확성 및 효율성을 위한 중요한 부분을 차지하지만 현재까지의 연구는 생성된 이벤트 로그로부터 프로세스 모델을 재설계하는 프로세스 발견 기법 (Process Discovery Technique)을 적용한 부분에서만 활발히 진행되었다. 프로세스 마이닝은 프로세스 발견 기법 외에도 프로세스 적합성검사 기법 (Process Conformance Checking Technique) 및 프로세스 확장 기법 (Process Extension Technique)이 존재한다. 이들은 많은 프로세스 발견 기법에 대한 연구들이 진행되고 나서야 최근 프로세스 마이닝의 이슈로 떠오르고 있다. 본 논문에서는 프로세스 적합성 검사를 위해 수집된 이벤트 로그와 기존에 나와 있는 여러 가지 프로세스 발견 알고리즘을 통해 생성된 프로세스를 수치적으로 비교할 수 있는 두 가지 애트리뷰트를 제시하였다.

  • PDF

Decision Tree Classifier for Multiple Abstraction Levels of Data (다중 추상화 수준의 데이터를 위한 결정 트리 분류기)

  • Jeong, Min-A;Lee, Do-Heon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.23-32
    • /
    • 2003
  • Since the data is collected from disparate sources in many actual data mining environments, it is common to have data values in different abstraction levels. This paper shows that such multiple abstraction levels of data can cause undesirable effects in decision tree classification. After explaining that equalizing abstraction levels by force cannot provide satisfactory solutions of this problem, it presents a method to utilize the data as it is. The proposed method accommodates the generalization/specialization relationship between data values in both of the construction and the class assignment phase of decision tree classification. The experimental results show that the proposed method reduces classification error rates significantly when multiple abstraction levels of data are involved.

An Efficient Candidate Pattern Tree Structure and Algorithm for Incremental Web Mining (점진적인 웹 마이닝을 위한 효율적인 후보패턴 저장 트리구조 및 알고리즘)

  • Kang, Hee-Seong;Park, Byung-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.71-79
    • /
    • 2007
  • Recent advances in the internet infrastructure have resulted in a large number of huge Web sites and portals worldwide. These Web sites are being visited by various types of users in many different ways. Among all the web page access sequences from different users, some of them occur so frequently that may need an attention from those who are interested. We call them frequent access patterns and access sequences that can be frequent the candidate patterns. Since these candidate patterns play an important role in the incremental Web mining, it is important to efficiently generate, add, delete, and search for them. This thesis presents a novel tree structure that can efficiently store the candidate patterns and a related set of algorithms for generating the tree structure, adding new patterns, deleting unnecessary patterns, and searching for the needed ones. The proposed tree structure has a kind of the 3 dimensional link structure and its nodes are layered.

Subtree Mining to extract Association rules from Tree Data (트리 데이터에서 연관규칙 추출을 위한 서브트리 마이닝)

  • Kang, Woo-Jun;Shin, Jun
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.317-320
    • /
    • 2006
  • XML 트리 데이터들로부터 빈번 서브 트리들을 추출하는 기존 방법들은 복잡하고 다수의 입력데이터 스캐닝을 필요로 할 뿐만 아니라 빈번 서브 트리를 구하기 위해 에지 하나하나의 조인 작업을 필요로 하였다. 이는 결과적으로 많은 수행 시간을 요한다. 본 논문에서는 트리데이터를 레벨 별로 나누고 이를 마치 채로 거르듯이 필터링하여 특정 수치 이상의 출현 횟수를 가지는 노드들만을 남겨 빠르게 빈번한 서브 트리를 찾고, 이를 이용하여 XML 연관규칙들을 생성하는 방법을 제시한다. 제시된 방법을 위해서 PairSet 이라는 새로운 자료구조를 도입하였으며, 이를 이용하는 크로스필터링 알고리즘을 개발하여 제시하였다.

  • PDF

Semantic-Based Label Lists Represented Information Extraction from Tree Data (트리 구조 데이터의 의미 기반 라벨 리스트 표현 정보 추출)

  • Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.27-28
    • /
    • 2020
  • 이형 데이터 간의 정보 전송과 교환을 가능하게 하는 유연한 트리 구조의 특성은 인터넷 및 IoT 환경에서의 대량 데이터 저장·전송·교환 등에 있어서 XML이나 JSON에서 주요하게 사용된다. 사용성에 있어서는 수월한 반면에, 감추어져 있는 가치있는 정보들을 트리 구조의 대량 데이터들로부터 찾아내는 것은 일반 단순 구조의 데이터에 비해서 훨씬 어려우며 복잡하고 난해한 문제들을 발생시킨다. 이는 트리가 갖는 계층 구조 때문이다. 본 논문에서는 계층 구조를 갖는 대량 트리 데이터들을 보다 단순한 리스트 구조로 변형한 후 해당 구조로부터 가장 자주 발생하는 유용한 정보들을 추출하는 방법을 제시한다.

  • PDF

TFP tree-based Incremental Emerging Patterns Mining for Analysis of Safe and Non-safe Power Load Lines (Safe와 Non-safe 전력 부하 라인 분석을 위한 TFP트리 기반의 점진적 출현패턴 마이닝)

  • Lee, Jong-Bum;Piao, Ming Hao;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this paper, for using emerging patterns to define and analyze the significant difference of safe and non-safe power load lines, and identify which line is potentially non-safe, we proposed an incremental TFP-tree algorithm for mining emerging patterns that can search efficiently within limitation of memory. Especially, the concept of pre-infrequent patterns pruning and use of two different minimum supports, made the algorithm possible to mine most emerging patterns and handle the problem of mining from incrementally increased, large size of data sets such as power consumption data.