• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.038 seconds

Efficient Fuzzy Rule Generation Using Fuzzy Decision Tree (퍼지 결정 트리를 이용한 효율적인 퍼지 규칙 생성)

  • 민창우;김명원;김수광
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.59-68
    • /
    • 1998
  • The goal of data mining is to develop the automatic and intelligent tools and technologies that can find useful knowledge from databases. To meet this goal, we propose an efficient data mining algorithm based on the fuzzy decision tree. The proposed method combines comprehensibility of decision tree such as ID3 and C4.5 and representation power of fuzzy set theory. So, it can generate simple and comprehensive rules describing data. The proposed algorithm consists of two stages: the first stage generates the fuzzy membership functions using histogram analysis, and the second stage constructs a fuzzy decision tree using the fuzzy membership functions. From the testing of the proposed algorithm on the IRIS data and the Wisconsin Breast Cancer data, we found that the proposed method can generate a set of fuzzy rules from data efficiently.

  • PDF

Mining of Frequent Structures over Streaming XML Data (스트리밍 XML 데이터의 빈발 구조 마이닝)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The basic research of context aware in ubiquitous environment is an internet technique and XML. The XML data of continuous stream type are popular in network application through the internet. And also there are researches related to query processing for streaming XML data. As a basic research to efficiently query, we propose not only a labeled ordered tree model representing the XML but also a mining method to extract frequent structures from streaming XML data. That is, XML data to continuously be input are modeled by a stream tree which is called by XFP_tree and we exactly extract the frequent structures from the XFP_tree of current window to mine recent data. The proposed method can be applied to the basis of the query processing and index method for XML stream data.

Neural Tree Classifier based on LVQ for Data Mining (데이터 마이닝을 위한 LVQ 기반 신경 트리 분류기)

  • 김세현;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.157-159
    • /
    • 2001
  • 신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.

  • PDF

Clustering Algorithm using the DFP-Tree based on the MapReduce (맵리듀스 기반 DFP-Tree를 이용한 클러스터링 알고리즘)

  • Seo, Young-Won;Kim, Chang-soo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.23-30
    • /
    • 2015
  • As BigData is issued, many applications that operate based on the results of data analysis have been developed, typically applications are products recommend service of e-commerce application service system, search service on the search engine service and friend list recommend system of social network service. In this paper, we suggests a decision frequent pattern tree that is combined the origin frequent pattern tree that is mining similar pattern to appear in the data set of the existing data mining techniques and decision tree based on the theory of computer science. The decision frequent pattern tree algorithm improves about problem of frequent pattern tree that have to make some a lot's pattern so it is to hard to analyze about data. We also proposes to model for a Mapredue framework that is a programming model to help to operate in distributed environment.

Analysis of Graph Mining based on Free-Tree (자유트리 기반의 그래프마이닝 기법 분석)

  • YoungSang No;Unil Yun;Keun Ho Ryu;Myung Jun Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.275-278
    • /
    • 2008
  • Recently, there are many research of datamining. On the transaction dataset, association rules is made by finding of interesting patterns. A part of mining, sub-structure mining is increased in interest of and applied to many high technology. But graph mining has more computing time then itemset mining. Therefore, that need efficient way for avoid duplication. GASTON is best algorithm of duplication free. This paper analyze GASTON and expect the future work.

Classification Rue Mining from Fuzzy Data based on Fuzzy Decision Tree (퍼지 데이타에 대한 퍼지 결정트리 기반 분류규칙 마이닝)

  • Lee, Geon-Myeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • 결정트리 생성은 일련의 특징값으로 기술된 사례들로부터 분류 지식을 추출하는 학습 방법중의 하나이다. 현장에서 수집되는 사례들은 관측 오류, 주관적인 판단, 불확실성 등으로 인해서 애매하게 주어지는 경우가 많다. 퍼지숫자나 구간값을 사용함으로써 이러한 애매한 데이타의 수치 속성은 쉽게 표현될 수 있다. 이 논문에서는 수치 속성은 보통값 뿐마아니라 퍼지숫자나 구간값을 갖을 수 있고, 비수치 속서은 보통값을 가지며, 데이터의 클래스는 확신도를 기자는 학습 데이터들로 부터, 분류 규칙을 마이닝하기 위한 퍼지 결정트리 생성 방법을 제안한다. 또한 제안한 방법에 의해 생성된 퍼지 결정트리를 사용하여, 새로운 데이터에 대한 클래스를 결정하는 추론 방법을 소개한다. 한편, 제안된 방법의 유용성을 보이기 위해 수행한 실험의 결과를 보인다.

  • PDF

Creation of Frequent Patterns using Clustering in Large Database (대용량 데이터베이스에서 클러스터링을 이용한 빈발 패턴 생성)

  • Kim, Eui-Chan;Hwang, Byung-Yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.100-102
    • /
    • 2005
  • 데이터베이스에 저장되어 있는 데이터들을 통해서 의미있는 정보를 찾는 것이 데이터 마이닝이다. 많은 데이터 마이닝 기법들 중에 연관규칙을 다루는 연구가 많이 이루어지고 있다. 연관규칙 기법도 다양하게 연구되고 있는데 그 중 빈발 패턴 트리(FP-Tree)라는 방법을 이용하여 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 빈발 패턴 트리는 기존에 잘 알려져있는 연관규칙 생성 기법인 Apriori 기법보다 우수한 성능을 가지는 방법이다. 그러나 빈발 패턴 트리도 몇가지 문제점을 가지고 있다. 본 논문에서는 빈발 패턴 트리의 문제점 중 하나인 과도한 FP-Tree 생성을 줄이려 한다. 조건부 패턴 베이스를 통해 얻어지는 조건부 FP-Tree의 생성을 줄여 기존의 FP-Tree보다 더 나은 성능을 얻기 위해서 적절한 클리스터링을 이용하려 한다. 클러스터링 기법은 비트 트랜잭션을 이용한 클러스터링 방법을 이용한다.

  • PDF

Aspect Mining Process Design Using Abstract Syntax Tree (추상구문트리를 이용한 어스팩트 마이닝 프로세스 설계)

  • Lee, Seung-Hyung;Song, Young-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.75-83
    • /
    • 2011
  • Aspect-oriented programming is the paradigm which extracts crosscutting concern from a system and solves scattering of a function and confusion of a code through software modularization. Existing aspect developing method has a difficult to extract a target area, so it is not easy to apply aspect mining. In an aspect minning, it is necessary a technique that convert existing program refactoring elements to crosscutting area. In the paper, it is suggested an aspect mining technique for extracting crosscutting concern in a system. Using abstract syntax structure specification, extract functional duplicated relation elements. Through Apriori algorithm, it is possible to create a duplicated syntax tree and automatic creation and optimization of a duplicated source module, target of crosscutting area. As a result of applying module of Berkeley Yacc(berbose.c) to mining process, it is confirmed that the length and volume of program has been decreased of 9.47% compared with original module, and it has been decreased of 4.92% in length and 5.11% in volume compared with CCFinder.

A Study on the Implementation of SQL Primitives for Decision Tree Classification (판단 트리 분류를 위한 SQL 기초 기능의 구현에 관한 연구)

  • An, Hyoung Geun;Koh, Jae Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.855-864
    • /
    • 2013
  • Decision tree classification is one of the important problems in data mining fields and data minings have been important tasks in the fields of large database technologies. Therefore the coupling efforts of data mining systems and database systems have led the developments of database primitives supporting data mining functions such as decision tree classification. These primitives consist of the special database operations which support the SQL implementation of decision tree classification algorithms. These primitives have become the consisting modules of database systems for the implementations of the specific algorithms. There are two aspects in the developments of database primitives which support the data mining functions. The first is the identification of database common primitives which support data mining functions by analysis. The other is the provision of the extended mechanism for the implementations of these primitives as an interface of database systems. In data mining, some primitives want be stored in DBMS is one of the difficult problems. In this paper, to solve of the problem, we describe the database primitives which construct and apply the optimized decision tree classifiers. Then we identify the useful operations for various classification algorithms and discuss the implementations of these primitives on the commercial DBMS. We implement these primitives on the commercial DBMS and present experimental results demonstrating the performance comparisons.

Development of Semantic-Based XML Mining for Intelligent Knowledge Services (지능형 지식서비스를 위한 의미기반 XML 마이닝 시스템 연구)

  • Paik, Juryon;Kim, Jinyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.59-62
    • /
    • 2018
  • XML을 대상으로 하는 연구가 최근 5~6년 사이에 꾸준한 증가를 보이며 이루어지고 있지만 대다수의 연구들은 XML을 구성하고 있는 엘리먼트 자체에 대한 통계적인 모델을 기반으로 이루어졌다. 이는 XML의 고유 속성인 트리 구조에서의 텍스트, 문장, 문장 구성 성분이 가지고 있는 의미(semantics)가 명시적으로 분석, 표현되어 사용되기 보다는 통계적인 방법으로만 데이터의 발생을 계산하여 사용자가 요구한 질의에 대한 결과, 즉 해당하는 정보 및 지식을 제공하는 형식이다. 지능형 지식서비스 제공을 위한 환경에 부합하기 위한 정보 추출은, 텍스트 및 문장의 구성 요소를 분석하여 문서의 내용을 단순한 단어 집합보다는 풍부한 의미를 내포하는 형식으로 표현함으로써 보다 정교한 지식과 정보의 추출이 수행될 수 있도록 하여야 한다. 본 연구는 범람하는 XML 데이터로부터 사용자 요구의 의미까지 파악하여 정확하고 다양한 지식을 추출할 수 있는 방법을 연구하고자 한다. 레코드 구조가 아닌 트리 구조 데이터로부터 의미 추출이 가능한 효율적인 마이닝 기법을 진일보시킴으로써 다양한 사용자 중심의 서비스 제공을 최종 목적으로 한다.

  • PDF