Journal of the Korean Institute of Telematics and Electronics C
/
v.35C
no.10
/
pp.59-68
/
1998
The goal of data mining is to develop the automatic and intelligent tools and technologies that can find useful knowledge from databases. To meet this goal, we propose an efficient data mining algorithm based on the fuzzy decision tree. The proposed method combines comprehensibility of decision tree such as ID3 and C4.5 and representation power of fuzzy set theory. So, it can generate simple and comprehensive rules describing data. The proposed algorithm consists of two stages: the first stage generates the fuzzy membership functions using histogram analysis, and the second stage constructs a fuzzy decision tree using the fuzzy membership functions. From the testing of the proposed algorithm on the IRIS data and the Wisconsin Breast Cancer data, we found that the proposed method can generate a set of fuzzy rules from data efficiently.
The basic research of context aware in ubiquitous environment is an internet technique and XML. The XML data of continuous stream type are popular in network application through the internet. And also there are researches related to query processing for streaming XML data. As a basic research to efficiently query, we propose not only a labeled ordered tree model representing the XML but also a mining method to extract frequent structures from streaming XML data. That is, XML data to continuously be input are modeled by a stream tree which is called by XFP_tree and we exactly extract the frequent structures from the XFP_tree of current window to mine recent data. The proposed method can be applied to the basis of the query processing and index method for XML stream data.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.157-159
/
2001
신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.
As BigData is issued, many applications that operate based on the results of data analysis have been developed, typically applications are products recommend service of e-commerce application service system, search service on the search engine service and friend list recommend system of social network service. In this paper, we suggests a decision frequent pattern tree that is combined the origin frequent pattern tree that is mining similar pattern to appear in the data set of the existing data mining techniques and decision tree based on the theory of computer science. The decision frequent pattern tree algorithm improves about problem of frequent pattern tree that have to make some a lot's pattern so it is to hard to analyze about data. We also proposes to model for a Mapredue framework that is a programming model to help to operate in distributed environment.
Recently, there are many research of datamining. On the transaction dataset, association rules is made by finding of interesting patterns. A part of mining, sub-structure mining is increased in interest of and applied to many high technology. But graph mining has more computing time then itemset mining. Therefore, that need efficient way for avoid duplication. GASTON is best algorithm of duplication free. This paper analyze GASTON and expect the future work.
결정트리 생성은 일련의 특징값으로 기술된 사례들로부터 분류 지식을 추출하는 학습 방법중의 하나이다. 현장에서 수집되는 사례들은 관측 오류, 주관적인 판단, 불확실성 등으로 인해서 애매하게 주어지는 경우가 많다. 퍼지숫자나 구간값을 사용함으로써 이러한 애매한 데이타의 수치 속성은 쉽게 표현될 수 있다. 이 논문에서는 수치 속성은 보통값 뿐마아니라 퍼지숫자나 구간값을 갖을 수 있고, 비수치 속서은 보통값을 가지며, 데이터의 클래스는 확신도를 기자는 학습 데이터들로 부터, 분류 규칙을 마이닝하기 위한 퍼지 결정트리 생성 방법을 제안한다. 또한 제안한 방법에 의해 생성된 퍼지 결정트리를 사용하여, 새로운 데이터에 대한 클래스를 결정하는 추론 방법을 소개한다. 한편, 제안된 방법의 유용성을 보이기 위해 수행한 실험의 결과를 보인다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.100-102
/
2005
데이터베이스에 저장되어 있는 데이터들을 통해서 의미있는 정보를 찾는 것이 데이터 마이닝이다. 많은 데이터 마이닝 기법들 중에 연관규칙을 다루는 연구가 많이 이루어지고 있다. 연관규칙 기법도 다양하게 연구되고 있는데 그 중 빈발 패턴 트리(FP-Tree)라는 방법을 이용하여 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 빈발 패턴 트리는 기존에 잘 알려져있는 연관규칙 생성 기법인 Apriori 기법보다 우수한 성능을 가지는 방법이다. 그러나 빈발 패턴 트리도 몇가지 문제점을 가지고 있다. 본 논문에서는 빈발 패턴 트리의 문제점 중 하나인 과도한 FP-Tree 생성을 줄이려 한다. 조건부 패턴 베이스를 통해 얻어지는 조건부 FP-Tree의 생성을 줄여 기존의 FP-Tree보다 더 나은 성능을 얻기 위해서 적절한 클리스터링을 이용하려 한다. 클러스터링 기법은 비트 트랜잭션을 이용한 클러스터링 방법을 이용한다.
Aspect-oriented programming is the paradigm which extracts crosscutting concern from a system and solves scattering of a function and confusion of a code through software modularization. Existing aspect developing method has a difficult to extract a target area, so it is not easy to apply aspect mining. In an aspect minning, it is necessary a technique that convert existing program refactoring elements to crosscutting area. In the paper, it is suggested an aspect mining technique for extracting crosscutting concern in a system. Using abstract syntax structure specification, extract functional duplicated relation elements. Through Apriori algorithm, it is possible to create a duplicated syntax tree and automatic creation and optimization of a duplicated source module, target of crosscutting area. As a result of applying module of Berkeley Yacc(berbose.c) to mining process, it is confirmed that the length and volume of program has been decreased of 9.47% compared with original module, and it has been decreased of 4.92% in length and 5.11% in volume compared with CCFinder.
KIPS Transactions on Software and Data Engineering
/
v.2
no.12
/
pp.855-864
/
2013
Decision tree classification is one of the important problems in data mining fields and data minings have been important tasks in the fields of large database technologies. Therefore the coupling efforts of data mining systems and database systems have led the developments of database primitives supporting data mining functions such as decision tree classification. These primitives consist of the special database operations which support the SQL implementation of decision tree classification algorithms. These primitives have become the consisting modules of database systems for the implementations of the specific algorithms. There are two aspects in the developments of database primitives which support the data mining functions. The first is the identification of database common primitives which support data mining functions by analysis. The other is the provision of the extended mechanism for the implementations of these primitives as an interface of database systems. In data mining, some primitives want be stored in DBMS is one of the difficult problems. In this paper, to solve of the problem, we describe the database primitives which construct and apply the optimized decision tree classifiers. Then we identify the useful operations for various classification algorithms and discuss the implementations of these primitives on the commercial DBMS. We implement these primitives on the commercial DBMS and present experimental results demonstrating the performance comparisons.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.59-62
/
2018
XML을 대상으로 하는 연구가 최근 5~6년 사이에 꾸준한 증가를 보이며 이루어지고 있지만 대다수의 연구들은 XML을 구성하고 있는 엘리먼트 자체에 대한 통계적인 모델을 기반으로 이루어졌다. 이는 XML의 고유 속성인 트리 구조에서의 텍스트, 문장, 문장 구성 성분이 가지고 있는 의미(semantics)가 명시적으로 분석, 표현되어 사용되기 보다는 통계적인 방법으로만 데이터의 발생을 계산하여 사용자가 요구한 질의에 대한 결과, 즉 해당하는 정보 및 지식을 제공하는 형식이다. 지능형 지식서비스 제공을 위한 환경에 부합하기 위한 정보 추출은, 텍스트 및 문장의 구성 요소를 분석하여 문서의 내용을 단순한 단어 집합보다는 풍부한 의미를 내포하는 형식으로 표현함으로써 보다 정교한 지식과 정보의 추출이 수행될 수 있도록 하여야 한다. 본 연구는 범람하는 XML 데이터로부터 사용자 요구의 의미까지 파악하여 정확하고 다양한 지식을 추출할 수 있는 방법을 연구하고자 한다. 레코드 구조가 아닌 트리 구조 데이터로부터 의미 추출이 가능한 효율적인 마이닝 기법을 진일보시킴으로써 다양한 사용자 중심의 서비스 제공을 최종 목적으로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.