• 제목/요약/키워드: 트리확장 순수 베이지안 네트워크

검색결과 2건 처리시간 0.016초

망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석 (Bayesian Network-based Data Analysis for Diagnosing Retinal Disease)

  • 김현미;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.269-280
    • /
    • 2013
  • 본 논문에서 망막 질환 요인간의 의존도 분석을 위해 효율적인 분류기를 활용할 수 있는 방안을 제시하였다. 먼저 여러 베이지안 네트워크 중에서 TAN (Tree-Augmented Naive Bayesian Network), GBN(General Bayesian Network)과 Markov Blanket으로 특징축소된 GBN과의 분류성능과 예측정확률을 비교분석하였다. 그리고 처음으로, 높은 성능을 보인 TAN을 망막 질환 임상데이터의 의존도 분석에 적용하였다. 의존도 분석 결과, 망막 질환의 진단과 예후 예측에 활용의 가능성을 보였다.

베이지안 네트워크 개선을 통한 탐지율 향상의 IDS 모델 (IDS Model using Improved Bayesian Network to improve the Intrusion Detection Rate)

  • 최보민;이정식;한명묵
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.495-503
    • /
    • 2014
  • 최근 보안 분야에서는 네트워크 패킷이나 로그와 같은 네트워크 정보를 수집하고 분석함으로써 네트워크 위협에 대응할 수 있는 침입탐지 시스템에 대한 연구를 활발히 진행되고 있다. 특히, 베이지안 네트워크는 주어진 몇 몇 자료만으로도 정확도 높은 침입에 대한 추론이 가능한 이점으로 이를 이용한 침입탐지 시스템의 모델링 기법들이 이전에도 진행되어 왔다. 그러나 이전 연구들에서는 네트워크 패킷간의 복잡성 문제와 이용되는 패킷 데이터의 연속성 문제를 반영하지 못하고 있기 때문에 높은 탐지정확도 산출에 한계가 있다. 따라서 본 논문에서는 이전 모델들이 갖는 문제들의 개선을 통하여 탐지율을 향상시키기 위해 K-means 클러스터링 기반의 두 가지 방법론을 제안한다. 첫 번째로는 K-means 클러스터링 기반의 정교한 노드구간 범위를 설정방법을 제안하여 연속성 데이터 처리 문제를 개선할 수 있다. 또한, 두 번째로는 K-means 클러스터링 기반으로 산출된 가중치를 학습에 적용하여 보다 견고한 CPT를 산출하여 탐지성능을 향상 시킬 수 있다. 제안하는 방법론들의 성능을 입증하기 위하여 방법론 모두를 적용한 K_WTAN_EM에 대한 탐지율을 이전 모델들과 비교 실험을 수행하였다. 실험 결과 제안하는 모델의 탐지율이 이전의 순수베이지안 네트워크기반(NBN) 모델 보다는 약 7.78%의 향상도를 보였고 트리확장 순수베이지안 네트워크(TAN) 모델 보다는 약 5.24%의 향상도를 산출하여 제안하는 방법의 우수성을 입증하였다.