비정형데이터의 분석을 위한 다양한 연구가 진행되면서 폭발적인 트리플 데이터 증가가 이루어졌다. 이는 결국 서비스 인프라의 병목현상을 초래하고 있으며, 그 해결책으로서 분산 병렬 아키텍처가 주목받고 있다. 본 논문은 대용량 시맨틱웹 자원을 저장, 적재, 질의 및 추론할 수 있는 트리플 저장소 특성에 가장 적합한 시스템 구조를 선정하기 위해 대용량 처리 능력, 데이터 처리 속도 및 안정성의 측면에서 연합 DBMS와 맵리듀스를 분석하는데 초점을 맞추고 있다. 분석 결과는 대용량 데이터 기반 트리플 저장소의 특성과 아키텍처의 유연성 및 향후 성능 개선 가능성을 판단하는 요소로 활용하여 맵리듀스 방식을 대용량 트리플 저장소에 적합한 방식으로 선정하였다. 본 연구는 대용량 데이터 기반 트리플 저장소 개발의 방향 수립을 위한 기반 연구로서 중요한 가치를 가진다.
정형화되어 있는 데이터를 트리플 형식의 RDF 데이터로 변환하기 위하여 매핑 온톨로지를 제안하며, 이 온톨로지를 이용하여 실제 데이터를 RDF로 변환하는 변환기를 구현하였다. 본 논문에서는 트리플 변환을 위해 수행하는 매핑 작업을 개념화하고, 일반적인 매핑 타입을 정형화하고 제약사항을 설정하여 온톨로지 스키마로 제공한다. 트리플 생성을 위해 사용자가 매핑 내용을 인스턴스로 생성하면, 이를 이용하여 정형화된 데이터를 RDF로 자동 변환하는 변환기를 구현한다. 제안하는 매핑 온톨로지를 이용한 매핑규칙 작업은 온톨로지 편집툴을 활용하여 작업의 편의성을 제공하며 변환 작업의 안내 역할을 할 것이다.
지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.
RDF 는 트리플의 집합으로서 그래프 데이터 모델로 표현되며, 사용자는 RDF 그래프 모델로부터 정보를 검색하기 위해 시멘틱 질의 언어를 사용한다. 그러나 이러한 접근 방식은 최악의 경우 전체 그래프 데이터 모델을 검색해야 되는 문제점이 발생한다. 이에 따라 최근의 연구에서는 시멘틱 질의를 효율적으로 처리하기 위해서 인덱스를 사용한다. 시멘틱 질의 언어(RDQL, SPARQL)의 핵심은 RDF 트리플에 대한 패턴을 기술함으로써 원하는 트리플 정보를 검색할 수 있게 하는 것이다. 따라서, 기존의 인덱스는 단일 트리플을 효율적으로 검색하는 데 초점을 둔다. 거라나 트리플 패턴의 집합으로 질의가 표현될 경우에는 트리플 패턴 사이의 상관관계 때문에 조인비용이 많이 발생하는 문제점이 있다. 본 논문에서는 조인 비용이 발생되는 문제점을 해결하기 위한 인덱싱 기법을 제안한다. RDF 그래프 모델에서 유지해야 할 정보를 줄이기 위해서 RDF 그래프 모델에 존재하는 유사한 서브 그래프를 하나의 서브 그래프로 병합한다. 병합절차를 마친 여러 서브 그래프에 존재하는 모든 경로를 인덱스에 유지 함으로써 조인 비용을 제거한다.
웹을 통한 데이터 공유에 대한 관심의 증가로 RDF 트리플 형태의 데이터가 폭발적으로 증가하고 있다. 대용량 RDF 데이터를 저장하고 빠른 SPARQL 질의 처리를 지원하는 트리플 저장소의 개발이 중요하다. 아파치 프로젝트 중 하나인 Jena-TDB는 가장 잘 알려진 오픈소스 트리플 저장소 중 하나로서 Jena 프레임워크 기반으로 구현됐다. 하지만 Jena-TDB 의 경우 단일 컴퓨터에서 작동하기 때문에 대용량 RDF 데이터를 다룰 수 없다는 문제점이 있다. 본 논문에서는 MongoDB를 활용한 Jena 프레임워크 기반의 트리플 저장소인 Jena-MongoDB를 제안한다. Jena 프레임워크를 사용했기 때문에 기존 Jena-TDB와 동일한 인터페이스로 사용할 수 있고 최신 표준 SPARQL 문법도 지원한다. 또한 MongoDB를 사용했기 때문에 분산환경에서도 작동할 수 있다. 대용량 LUBM 데이터셋에 대한 SPARQL 질의 처리 실험결과 Jena-MongoDB가 Jena-TDB 보다 빠른 질의 응답 속도를 보여줬다.
3-컬럼의 트리플 테이블로 구성되는 트리플 데이터베이스의 질의 처리는 고비용이 드는데, 단축 경로는 그 비용을 감소시키는 방법으로 알려졌다. 어떠한 단축 경로를 선택 구성할지는 주요한 문제이며, 질의 빈도를 기반으로 단축 경로 이득을 계산하는 방식이 주로 사용된다. 하지만 이러한 방식은 트리플 데이터의 추가 혹은 변경을 적절히 반영하지 못한다. 본 논문에서는 질의 처리 시간 단축 측면뿐 아니라 경로 구축 및 유지 비용도 고려하는 이득 모델을 다룬다. 이득 모델은 이득 함수로 설계되어 단축 경로 선택 기법에 적용된다. 이득 함수 구성 인자가 미치는 영향을 실세계 트리플 데이터를 사용해 실험 분석한다.
RDF 데이터에 대한 시간 속성에 대한 연구는 트리플의 속성에 시간을 부여하는 방법이 많이 사용되고 있다. 하지만 트리플마다 시간 속성을 부여하는 방법은 저장 및 관리 측면에서 비효율적이다. 본 논문에서는 하이퍼그래프 기반의 RDF 시간 속성 모델링 방법을 제안한다. 하나의 트리플마다 시간 속성을 부여하는 것이 아닌 여러 재의 트리플을 하나의 하이퍼 간선으로 연결하여 시간 속성을 부여하는 방법으로 기존 방법보다 RDF 데이터가 가지는 의미에 적합하며 직관적으로 이해하기가 쉽다. 또한 시간 속성 RDF에서 지원해야 하는 시간 관계를 하이퍼그래프의 여러 속성을 이용하여 처리할 수 있는 장점을 가지게 된다.
본 논문에서는 지식베이스 완성을 위한 새로운 모델, KBCNN을 소개한다. KBCNN 모델은 CNN을 기반으로 지식베이스의 개체들과 관계들 사이의 연관성을 포착한다. KBCNN에서 각 트리플 <주어 개체, 관계, 목적어 개체>는 3개의 열을 가진 행렬로 표현되며, 각각의 열은 트리플의 각 원소를 표현하는 임베딩 벡터다. 트리플을 나타내는 행렬은 여러 개의 필터를 가지고 있는 컨볼루션 레이어를 통과한 뒤, 하나의 특성 벡터로 합쳐진다. 이 특성 벡터를 가중치 행렬과 내적 하여 최종적으로 해당 트리플의 신뢰도를 출력하게 된다. 이 신뢰도를 바탕으로 트리플의 진실 여부를 가려낼 수 있다. 지식베이스 완성 연구에서 가장 많이 사용되는 데이터셋인 FB15k-237을 기반으로 한 실험을 통해 KBCNN 모델이 기존 임베딩 모델들보다 뛰어난 성능을 보이는 것을 확인하였다.
시맨틱 웹상에서 RDFS로 표현된 데이터의 사용 증가로 인하여, 대용량 데이터의 추론에 대한 많은 요구가 생겨나고 있다. 많은 연구자들은 대용량 온톨로지 추론을 수행하기 위해서 하둡과 같은 고가의 분산 프레임워크를 활용한다. 그러나, 적절한 사이즈의 RDFS 트리플 추론을 위해서는 굳이 고가의 분산 환경 시스템을 사용하지 않고 단일 머신에서도 논리적 프로그래밍을 이용하면 분산 환경과 유사한 추론 성능을 얻을 수 있다. 본 논문에서는 단일 머신에 논리적 프로그래밍 방식을 적용한 대용량 RDFS 추론 기법을 제안하였고 다중 머신을 기반으로 한 분산 환경 시스템과 비교하여 2억개 정도의 트리플에 대한 RDFS 추론 시스템을 적용한 경우 분산환경과 비슷한 성능을 보이는 것을 실험적으로 증명하였다. 효율적인 추론을 위해 온톨로지 모델을 세부적으로 분리한 메타데이터 구조와 대용량 트리플의 색인 방안을 제안하고 이를 위해서 전체 트리플을 하나의 모델로 로딩하는 것이 아니라 각각 온톨로지 추론 규칙에 따라 적절한 트리플 집합을 선택하였다. 또한 논리 프로그래밍이 제공하는 Unification 알고리즘 기반의 트리플 매칭, 검색, Conjunctive 질의어 처리 기반을 활용하는 온톨로지 추론 방식을 제안한다. 제안된 기법이 적용된 추론 엔진을 LUBM1500(트리플 수 2억개) 에 대해서 실험한 결과 166K/sec의 추론 성능을 얻었는데 이는 8개의 노드(8 코아/노드)환경에서 맵-리듀스로 수행한 WebPIE의 185K/sec의 추론 속도와 유사함을 실험적으로 증명하였다. 따라서 단일 머신에서 수행되는 본 연구 결과는 트리플의 수가 2억개 정도까지는 분산환경시스템을 활용하지 않고도 분산환경 시스템과 비교해서 비슷한 성능을 보이는 것을 확인할 수 있었다.
본 논문에서는 세계 최대 규모의 생의학 분야 서지 데이터베이스인 MEDLINE 전체를 링크드 데이터로 변환 구축하는 효율적인 방안을 제시한다. 이를 위해서 우선 MEDLINE 레코드 구조를 세부적으로 분석하여 적합한 RDF 스키마를 도출하고 각 레코드를 도출된 스키마에 유효한 RDF 파일로 변환하는 과정을 거친다. 본 논문에서는 변환된 레코드 단위의 모든 RDF 파일을 병합하여 이를 단일 RDF 트리플 저장소에 저장할 때 주어 URI 중복 확인 절차를 효율화하는 이중 일괄 등록 방법을 적용한다. 이 방법을 통해서 RDF 파일 단위로 링크드 데이터를 순차적으로 구축하는 방법과 비교했을 때 주어 URI 중복 제거를 위한 RDF 트리플 저장소 접근 횟수가 26,597,850회에서 2,400회로 감소하는 결과를 가져왔다. 따라서 본 연구의 결과는 대용량 서지 레코드 집합을 링크드 데이터로 변환하는 과정에서의 비효율성을 제거하고 신속성과 시의성을 확보할 수 있는 중대한 계기를 제공할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.