• Title/Summary/Keyword: 트리플 그래프

Search Result 24, Processing Time 0.037 seconds

Indexing Mechanism for Efficient Semantic Query Processing (효율적인 시멘틱 질의 처리를 위한 인덱싱 기법)

  • Kim Hak-Soo;Cha Hyun-Seok;Son Jin-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.97-100
    • /
    • 2006
  • RDF 는 트리플의 집합으로서 그래프 데이터 모델로 표현되며, 사용자는 RDF 그래프 모델로부터 정보를 검색하기 위해 시멘틱 질의 언어를 사용한다. 그러나 이러한 접근 방식은 최악의 경우 전체 그래프 데이터 모델을 검색해야 되는 문제점이 발생한다. 이에 따라 최근의 연구에서는 시멘틱 질의를 효율적으로 처리하기 위해서 인덱스를 사용한다. 시멘틱 질의 언어(RDQL, SPARQL)의 핵심은 RDF 트리플에 대한 패턴을 기술함으로써 원하는 트리플 정보를 검색할 수 있게 하는 것이다. 따라서, 기존의 인덱스는 단일 트리플을 효율적으로 검색하는 데 초점을 둔다. 거라나 트리플 패턴의 집합으로 질의가 표현될 경우에는 트리플 패턴 사이의 상관관계 때문에 조인비용이 많이 발생하는 문제점이 있다. 본 논문에서는 조인 비용이 발생되는 문제점을 해결하기 위한 인덱싱 기법을 제안한다. RDF 그래프 모델에서 유지해야 할 정보를 줄이기 위해서 RDF 그래프 모델에 존재하는 유사한 서브 그래프를 하나의 서브 그래프로 병합한다. 병합절차를 마친 여러 서브 그래프에 존재하는 모든 경로를 인덱스에 유지 함으로써 조인 비용을 제거한다.

  • PDF

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

Triple Extraction for RDF Graph Construction from Wikipedia Articles (위키피디아 문서로부터 트리플 추출과 RDF 그래프 생성)

  • Lee, SoonWoong;Choi, KeySun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.106-110
    • /
    • 2009
  • 웹이 발전하면서 점점 더 많은 정보가 웹을 통해 생성되고 공유되고 있다. 하지만 정보의 급격한 증가로 인해 정작 정확한 정보를 찾는 것은 오히려 더 어려워지고 있고, 이로 인해 특히 구조화되지 않은 텍스트에 대한 정확한 정보 검색의 필요성이 증가하고 있다. 본 논문에서는 위키피디아 문장들로부터 RDF 트리플을 추출하고 이를 하나의 연결된 RDF 그래프로 구성함으로써 효과적인 정보 검색을 수행하는 방법을 제안하고자 한다. 트리플 추출 방법은 문장에 대한 파스 트리를 탐색함으로써 이루어지는데, 약 81%의 정확도를 나타내었다. 최종적으로 생성되는 RDF 그래프는 입력 문장들의 문법적인 요소만을 고려하기 때문에 방법이 단순하지만 그래프 탐색을 통해 다양한 쿼리에 대한 정보 검색이 가능하다.

  • PDF

RNN Based Natural Language Sentence Generation from a Knowledge Graph and Keyword Sequence (핵심어 시퀀스와 지식 그래프를 이용한 RNN 기반 자연어 문장 생성)

  • Kwon, Sunggoo;Noh, Yunseok;Choi, Su-Jeong;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.425-429
    • /
    • 2018
  • 지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.

  • PDF

A Hypergraph-based Modeling for Temporal RDF (하이퍼 그래프 기반 Temporal RDF 모델링 기법)

  • Lee, Taewhi;Im, Dong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.694-696
    • /
    • 2015
  • RDF 데이터에 대한 시간 속성에 대한 연구는 트리플의 속성에 시간을 부여하는 방법이 많이 사용되고 있다. 하지만 트리플마다 시간 속성을 부여하는 방법은 저장 및 관리 측면에서 비효율적이다. 본 논문에서는 하이퍼그래프 기반의 RDF 시간 속성 모델링 방법을 제안한다. 하나의 트리플마다 시간 속성을 부여하는 것이 아닌 여러 재의 트리플을 하나의 하이퍼 간선으로 연결하여 시간 속성을 부여하는 방법으로 기존 방법보다 RDF 데이터가 가지는 의미에 적합하며 직관적으로 이해하기가 쉽다. 또한 시간 속성 RDF에서 지원해야 하는 시간 관계를 하이퍼그래프의 여러 속성을 이용하여 처리할 수 있는 장점을 가지게 된다.

A Transforming Method between Extended Entity-relationship Model and Object-relational Database using Triple graph grammer (트리플 그래프 문법을 사용한 확장 개체-관계 모델과 객체-관계 모델간의 변환 방법)

  • Nhung, Nguyen Thi;Song, Sang-Geun;Shin, Jung-Hoon;Lee, Sang-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.78-80
    • /
    • 2012
  • 개체 관계(ER) 모델과 확장 개체 관계(EER) 모델은 개념적 데이터베이스 설계분야에서 가장 많이 사용되는 모델이다. 확장 개체 관계 모델은 여전히 객체지향 데이터베이스를 처리하는데 강력하나 최신 객체관계 데이터베이스와 UML과 같은 새로운 데이터베이스 모델링을 처리하기에는 부족함이 많다. 따라서 본 논문에서는 이러한 객체 관계 데이터베이스를 지원하기 위한 확장 개체 관계 기반의 변환 방법을 제안한다. 변환 규칙은 트리플 그래프 문법을 사용하여 정의하고 MOFRON TGG 에디터를 이용하여 표현한다. 트리플 그래프 문법 규칙에 따라 본 제안 방법은 자동 ORDB 개발 프레임워크에 적용할 수 있다.

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing (인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론)

  • Jeon, MyungJoong;So, ChiSeoung;Jagvaral, Batselem;Kim, KangPil;Kim, Jin;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.998-1009
    • /
    • 2015
  • In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.

A New Keyword Search Algorithm for RDF/S and OWL Documents (RDF/S 및 OWL 문서에 대한 키워드 검색 알고리즘)

  • Kim, Hak Soo;Son, Jin Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.321-324
    • /
    • 2009
  • XML 또는 RDBMS 에서의 키워드 검색은 기존의 정보 검색처럼 데이터의 구조 또는 질의 언어에 대한 사전 지식 없이 질의 처리를 수행하는 연구 분야 중의 하나이다. 오늘날 키워드 검색을 효율적으로 처리하기 위해 제안된 연구들은 그래프 기반의 질의 처리에 기반한 기법들에 초점을 두고 있다. 이러한 접근들은 XML 또는 RDBMS 안에 존재하는 데이터를 그래프 구조에 기반한 데이터로 변환한 다음에 그래프 탐색을 통해서 모든 질의 키워드를 포함하는 결과들을 찾는다. 그러나 기존의 기법들을 RDF/S 또는 OWL 문서와 같은 복잡한 그래프 구조에 적용하기에는 질의 성능 측면에서 많은 문제점을 가지고 있다. 또한, 온톨로지 언어의 의미적 단위로서의 RDF 트리플을 고려하지 않기 때문에 질의 결과에 대한 신뢰성을 보장할 수 없다. 이러한 관점에서 본 논문은 RDF/S 또는 OWL 저장소에서 효율적이고 의미적인 키워드 검색을 위한 인덱싱 기법 및 알고리즘을 설계한다.