트리플 데카 착물, bis(${\eta}^5$-cyclopentadienyl)-${\mu}$-(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)dicobalt 1을 합성하고, 이것을 출발물질로 하여 여기에 3-hexyne을 과량으로 반응시켰더니 두 종류의 sandwich 착물인 cyclopentadienyl(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)cobalt 2와 cyclopentadienyl(${\eta}^6$-hexaethyl benzene)cobalt 3가 분리되었다. 착물 3은 실온에서 정제하는 동안 분해하여 3-hexyne의 고리화 반응 생성물인 hexaethyl benzene이 생성되었음을 확인하였다.
트리플산에 의한 phenylsilane 의 선태적 분해반응에서는 silyltriflate ester 결합을 형성하였다. 1 혹은 2당량배의 트리플산에 의한 $Ph_3SiH$과 carbosilane 고분자$(Ph_2SiCH_2CH_2CH_2)n$의 Ph기 치환반응에서는 1 혹은 2치환 silyltriflate ester 결합을 형성하였으며 이들과 allylmagnesium bromide와의 반응에 의해 이에 상응되는 화합물을 높은 수율로 얻었다. Carbosilane 고분자의 나무가지꼴 실란거대분자를 allylation 과 hydrosilation법에 의해 제3세대(G3)까지 합성하였다.
본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.
웹의 비약적인 발전으로 정보가 폭발적으로 증가하였고, 이로 인하여 정보검색 기술에서 해당 정보를 빠르게 찾는 것에 목표를 두었던 기술이 원하는 정보를 정확하게 찾는 기술로 발전을 이루게 된다. 시맨틱 웹 기술은 이와 같은 요구에 부응하기 위하여 등장했으며 의미 기반의 검색 및 추론과 같은 지식 발견 등의 기술을 가능하게 한다. 일반적인 정보가 아닌 법률과 같은 전문지식 영역의 정보는 현재 일반 사용자들이 쉽게 접근하여 법률 정보를 확인할 수 있는 환경이 되지 못한다. 따라서 시맨틱 웹 기술을 이용한 온톨로지 기반의 법률 검색 서비스가 필요하며 이를 위한 기반 시스템을 구축하는 것이 중요하다. 따라서 본 논문에서는 온톨로지 기반의 법률 검색 서비스를 위해 법률이 가지는 구조적 특징을 분석하고, RDF 기반의 온토롤지 구축 방법 및 RDF 언어 레벨에서 하지 못했던 명시적인 트리플 외에 추론된 트리플을 찾아 낼 수 있는 질의 방법의 고안 및 추론 방법을 제안한다. 이를 통해 법률 용어를 정확하게 모르는 일반 사용자들이 법과 관련된 검색을 수행할 시 효과적으로 법명 및 조문 내용을 확인할 수 있으며 RDF 언어 레벨의 추론 기능의 제안으로 RDF 레벨로 구축된 다양한 분야의 시스템에서 다른 추가적인 레이어 없이 추론을 위한 기반 기술을 갖출 수 있다.
지식 관리 시스템을 운영하기 위해서는 대량의 지식 정보를 자동으로 추론 및 관리하는 기술이 필요하다. 현재, 이러한 시스템의 대다수는 컴퓨터간의 지식 정보를 자동으로 교환하고 스스로 새로운 지식을 추론하기 위해 온톨로지를 적용하고 있다. 따라서 대용량의 온톨로지를 대상으로 새로운 정보를 추론하는 효율적인 기술이 요구되고 있다. 본 논문은 분산 클러스터의 메모리상에서 MapReduce와 유사한 작업을 수행하는 Spark 프레임워크를 적용하여, SHIF 수준으로 작성된 대용량의 온톨로지를 규칙 기반으로 추론하는 기술에 대해서 제안한다. 이에 본 논문은 다음 3 가지에 초점을 맞추어 설명을 한다. 클러스터내의 분산된 메모리상에서 대용량 추론을 실시하기 위해서, 먼저 각 추론 규칙에 따라 대용량의 온톨로지 트리플을 효과적으로 분류하여 적재하기 위한 자료구조, 두 번째 규칙간의 종속 관계와 상호 연관성에 따른 규칙 실행 순서와 반복 조건 정의, 마지막으로 규칙 실행에 필요한 명령을 정의하고 이러한 명령어를 실행하여 추론을 수행하는 알고리즘에 대해 설명한다. 제안하는 기법의 효율성을 검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험을 수행하였다. 대표적인 분산클러스터 기반 대용량 온톨로지 추론 엔진인 WebPie와 비교 실험한 결과, LUBM에 대해서 WebPie의 추론 처리량이 553 트리플/초 인데 비해 284배 개선된 157k 트리플/초의 성능 향상이 있었다.
본 연구는 수수 종자에 소독제를 이용하여 알맞은 종자 소독방법을 확립하고자 수행되었으며, 수행된 결과를 요약하면 아래와 같다. 종자소독 실험에 있어 희석액 200배 기준으로 침지시간에 따른 발아율은 SAP317과 BTx623 두 품종 모두 베노밀·티람수화제를 처리하지 않는 무처리와 소독제에 24시간 침지처리에서 발아율이 가장 높았다. 오염률은 무처리를 제외하고 약제소독 처리에서 효과가 있는 것으로 나타났다. 티오파네이트메틸·트리플루미졸수화제 또한 같은 결과를 나타냈다. 베노밀·티람수화제를 24시간 침종 처리한 후 SAP317 품종에서의 발아율은 무처리와 200배, 400배액에서 가장 높았으며, BTx623 품종에서의 발아율은 200배와 400배액에서 높았다. 티오파네이트메틸·트리플루미졸수화제를 24시간 침종 처리한 후 SAP317과 BTx623 두 품종에서의 발아율은 무처리와 200배 처리에서 가장 높았다. 오염률은 SAP317 품종에서는 두 소독제 모두 무처리를 제외하고 모든 농도 처리에서 효과가 있는 것으로 나타났으며, BTx623 품종에서는 두 소독제 모두 100배와 200배 처리에서 효과가 있는 것으로 나타났다. 수수 종자소독 시 활용가능한 기초자료를 정립하기 위해 실시한 실험결과를 종합하여 볼 때 수수종자의 발아율 향상 및 오염률을 줄이기 위해서는 베노밀·티람수화제와 티오파네이트메틸·트리플루미졸수화제 소독제를 200배 희석하여 24시간 침지 하는 것이 수수 종자소독에 가장 효율적이었다.
지식 서비스 시스템이 효과적인 서비스를 제공하기 위해서는, 명시된 지식을 바탕으로 새로운 지식을 추론 할 수 있어야 한다. 대부분 지식 서비스 시스템은 온톨로지로 지식을 표현한다. 실 세계의 지식 정보의 양은 점점 방대해지고 있으며, 따라서 대용량 온톨로지를 효과적으로 추론하는 기법이 요구되고 있다. 본 논문은 클라우드 컴퓨팅 환경을 기반으로 대용량 온톨로지를 RDFS수준으로 추론하기 위한 분산 테이블 조인 방법을 제안하고, 성능을 평가한다. 본 논문에서 제안하는 RDFS 추론은 분산 파일 시스템 환경에서 RDFS 메타 테이블을 기반으로 맵-리듀스를 적용한 방식과, 맵-리듀스를 사용하지 않고 클라우드 컴퓨터의 메모리만 사용한 방식에 초점을 맞추었다. 따라서 본 논문에서는 제안하는 각 기법에 대한 추론 시스템 구조와 RDFS 추론 규칙에 따른 메타 테이블 설계 및 추론 전략 알고리즘에 대해서 중점적으로 설명한다. 제안하는 기법의 효율성을 검증하기 위해 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM1000부터 LUBM6000을 대상으로 실험을 수행 하였다. 가장 큰 LUBM6000(8억 6천만 트리플)의 경우, 메타 테이블 기반의 RDFS 추론 기법은 전체 추론 시간이 13.75분(초당 1,042 트리플 추론) 소요된 반면, 클라우드 컴퓨터의 메모리를 적용한 방식은 7.24분(초당 1,979 트리플 추론)이 소모되어 약 2배정도 빠른 추론 속도를 보였다.
2-아릴프로피온산 계열의 키랄 의약품의 효소적 dynamic kinetic resolution (DKR) 공정에서 라세미화 염기촉매로 트리 옥틸아민이 지금까지 주로 사용되어 왔으나 반응매질에 녹은 상태로 작용해 회수 및 재사용이 어려웠다. 본 연구에서는 이를 개선하고자 라세미화 반응을 위한 고효율 고체 염기를 탐색해 보았다. 45$^{\circ}C$, 아이소옥탄 내에서 (S)-나프록센 2,2,2-트리플로로에틸 씨오에스터를 기질로 무기 염기류, 염기성음이온교환수지류, resin-bound 염기류 등을 시험한 결과, 약염기성 음이온교환수지인 DIAION WA30을 사용하였을 때 가장 효과적이었다. DIAION WA30의 2차 interconversion constant ( $k_{int}$$^*/)는 8.6${\times}$$10^{-4}$ m $M^{-1}$$h^{-1}$이며 동일한 실험조건하에서 수행한 트리옥틸아민 ( $k_{int}$$^*/ = 2.5${\times}$$10^{-4}$ m $M^{-1}$$h^{-1}$)에 비해 약 3배가 높았다. 효소 활성에 필수적인 물의 양에 따른 DIAION WA30의 라세미화 효율에 관하여 실험한 결과, 물의 양이 증가할수록 그 효율은 감소하였다. DIAION WA30을 라세미화 촉매로 사용하여 아이소옥탄 내에서 라세믹 나프록센 2,2,2-트리플로로에틸 씨오에스터의 효소적 DKR 반응을 수행해 보았다. 그 결과 DIAION WA30을 사용하지 않은 경우에 비해 반응 전환율과 생성물의 광학 순도는 급격히 향상되었다. 전통적 광학분할 반응의 최대 50%라는 전환율의 제한이 본 연구에서 찾은 DIAION WA30을 첨가함으로써 성공적으로 극복되었다. 또한 고체 염기촉매인 DIAION WA30의 사용은 라세미화 촉매의 회수 및 재사용이 가능하게 해준다.다.다.다.다.다.
LOD(Linked Open Data)는 온톨로지에 기반하여 구조화되고 링크드 데이터 원칙에 의거하여 식별, 연결, 접근되는 RDF 트리플들로 구성된다. 이러한 LOD 데이터집합의 공개는 LOD 클라우드의 확장으로 이어지며 궁극적으로는 데이터 중심적인 웹으로 진화한다. 그러나, 존재적으로 동일한 개체들이 여러 LOD 데이터집합들에 걸쳐 서로 다르게 식별되는 경우 이들간의 동일성을 파악하여 신뢰적인 연결을 제공하는 것은 어려운 작업이다. 이를 위하여 본 논문은 신뢰향상적 연결성 평가(Trustworthiness Improving Link Evaluation: TILE) 기법을 제시한다. 보다 신뢰적인 연결성 평가 결과를 도출하기 위하여 TILE은 4단계로 진행한다. 우선, TILE은 LOD 데이터집합의 문법요소들이 가지는 추론적 특징을 고찰하여 잠재적으로만 존재하고 있던 사실들을 RDF 트리플들로 실체화하여 이를 데이터집합에 보강한다. 두 번째 단계에서 지정한 술어의 목적어 값을 비교하여 평가를 수행하며 세 번째 단계에서 RDF 트리플의 술어부가 지니고 있는 문법적 특성을 주어서술적/어휘정의적 관점에서 평가한 후 이를 두 번째 단계의 결과에 추가 반영한다. 이 과정에서 TILE이 고찰하는 문법적 요소들은 LOD 클라우드를 구축하기 위하여 W3C가 제시한 언어인 RDFS, OWL, OWL2 모두를 망라한다. 마지막으로, LOD 데이터집합 공개자로 하여금 연결성 평가결과를 검토하여 재평가 실시 혹은 연결확정을 결정하도록 함으로써 공개하는 데이터의 연결성이 가져야 하는 신뢰성에 공개주체의 책임이 반영되도록 한다.
매년 RDFS 데이터는 대용량화 되어 가며, 빠른 질의를 위한 SPARQL 처리방식에 대한 변화가 필요하게 되었다. 이를 위해 대용량 분산 처리 프레임워크를 활용한 SPARQL의 질의 처리방식이 많이 연구되고 있다. 기존의 연구 중 대용량 분산 처리 프레임워크인 Hadoop(MapReduce) 기반 질의 엔진은 반복적인 작업으로 인한 잦은 I/O 발생으로 실시간 질의 처리가 불가능하며, 인메모리 기반 분산 질의 엔진 역시 낮은 단계의 언어 수준에서 분산 구조를 고려한 구현이 필요하기 때문에 질의 엔진 구축이 어렵다. 본 논문에서는 인메모리 기반 분산 질의 처리 프레임워크인 SparkSQL을 활용하여 대용량 트리플 데이터에 대한 SPARQL 질의문 처리 속도를 향상시킬 수 있는 질의 처리 엔진 구축 방법을 제안한다. SparkSQL 은 Spark 기반의 고수준 분산 질의 엔진으로서 기존의 SQL문을 활용한 질의가 가능하다. 따라서 SPARQL 질의문을 처리하기 위해서는 Jena를 이용하여 Algebra Tree를 생성한 후 이를 Spark 시스템에 적용하기 위한 Spark Algebra Tree로 변환해야 한다. 그리고 이를 이용하여 SparkSQL 질의문을 생성하는 시스템을 구축하였다. 또한 Spark 인메모리 시스템에서 보다 효율적인 질의 처리를 위한 DataFrame기반의 트리플 Property 테이블 설계를 제안하고 SparkSQL 프레임워크에 활용하였다. 마지막으로 기존의 분산처리 프레임워크를 사용한 질의 엔진과 비교 평가를 통하여 연구의 타당성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.