• Title/Summary/Keyword: 트리기반 학습기

Search Result 30, Processing Time 0.03 seconds

Development of Convergence Educational Program Using AI Platform: Focusing on Environmental Education for Grades 5-6 (인공지능 플랫폼을 활용한 융합수업안 개발 : 5-6학년 환경교육을 중심으로)

  • Choi, Heyoungyun;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.213-221
    • /
    • 2021
  • With the advent of the 4th industrial revolution, the need for artificial intelligence education has increased. The online learning environment caused by COVID-19 made it possible to use variety of artificial intelligence platforms. In this study, an aritificial intelligence class plan was developed and proposed to achieve the goal of artificial intelligence education using an AI platform. The AI platform used is AI for Oceans, With the theme of creating a program for the environment, designed a 6-hour project class using Novel Engineering-based on STEAM model. Students experience AI for Oceans enough time and learn supervised learning by experience. Based on understanding of supervised learning, students design their own programs for the environment using Entry's AI blocks. In this study, for AI convergence education, this lesson was developed and presented with the goal of acquiring the creative problem solving ability and integrated thinking ability by using the principles of artificial intelligence to solve problems.

  • PDF

Adaptive Strategy Game Engine Using Non-monotonic Reasoning and Inductive Machine Learning (비단조 추론과 귀납적 기계학습 기반 적응형 전략 게임 엔진)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Strategic games are missing special qualities of genre these days. Game engines neither reason about behaviors of computer objects nor have learning ability that can prepare countermeasure in variously command user's strategy. This paper suggests a strategic game engine that applies non-monotonic reasoning and inductive machine learning. The engine emphasizes three components -“user behavior monitor”to abstract user's objects behavior,“learning engine”to learn user's strategy,“behavior display handler”to reflect abstracted behavior of computer objects on game. Especially, this paper proposes two layered-structure to apply non-monotonic reasoning and inductive learning to make behaviors of computer objects that learns strategy behaviors of user objects exactly, and corresponds in user's objects. The engine decides actions and strategies of computer objects with created information through inductive learning. Main contribution of this paper is that computer objects command excellent strategies and reveal differentiation with behavior of existing computer objects to apply non-monotonic reasoning and inductive machine learning.

A Study to Design the Instructional Program based on Explainable Artificial intelligence (설명가능한 인공지능기반의 인공지능 교육 프로그램 개발)

  • Park, Dabin;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.149-157
    • /
    • 2021
  • Ahead of the introduction of artificial intelligence education into the revised curriculum in 2022, various class cases based on artificial intelligence should be developed. In this study, we designed an artificial intelligence education program based on explainable artificial intelligence using design-based research. Artificial intelligence, which covers three areas of basic, utilization, and ethics of artificial intelligence and can be easily connected to real-life cases, is set as a key topic. In general design-based studies, more than three repetitive processes are performed, but the results of this study are based on the results of the primary design, application, and evaluation. We plan to design a program on artificial intelligence that is more complete based on the third modification and supplementation by applying it to the school later. This research will help the development of artificial intelligence education introduced at school.

  • PDF

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Estimation of River Flow Data Using Machine Learning (머신러닝 기법을 이용한 유량 자료 생산 방법)

  • Kang, Noel;Lee, Ji Hun;Lee, Jung Hoon;Lee, Chungdae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.261-261
    • /
    • 2020
  • 물관리의 기본이 되는 연속적인 유량 자료 확보를 위해서는 정확도 높은 수위-유량 관계 곡선식 개발이 필수적이다. 수위-유량 관계곡선식은 모든 수문시설 설계의 기초가 되며 홍수, 가뭄 등 물재해 대응을 위해서도 중요한 의미를 가지고 있다. 그러나 일반적으로 유량 측정은 많은 비용과 시간이 들고, 식생성장, 단면변화 등의 통제특성(control)이 변함에 따라 구간분리, 기간분리와 같은 비선형적인 양상이 나타나 자료 해석에 어려움이 존재한다. 특히, 국내 하천의 경우 자연적 및 인위적인 환경 변화가 다양하여 지점 및 기간에 따라 세밀한 분석이 요구된다. 머신러닝(Machine Learning)이란 데이터를 통해 컴퓨터가 스스로 학습하여 모델을 구축하고 성능을 향상시키는 일련의 과정을 뜻한다. 기존의 수위-유량 관계곡선식은 개발자의 판단에 의해 데이터의 종류와 기간 등을 설정하여 회귀식의 파라미터를 산출한다면, 머신러닝은 유효한 전체 데이터를 이용해 스스로 학습하여 자료 간 상관성을 찾아내 모델을 구축하고 성능을 지속적으로 향상 시킬 수 있다. 머신러닝은 충분한 수문자료가 확보되었다는 전제 하에 복잡하고 가변적인 수자원 환경을 반영하여 유량 추정의 정확도를 지속적으로 향상시킬 수 있다는 이점을 가지고 있다. 본 연구는 머신러닝의 대표적인 알고리즘들을 활용하여 유량을 추정하는 모델을 구축하고 성능을 비교·분석하였다. 대상지역은 안정적인 수량을 확보하고 있는 한강수계의 거운교 지점이며, 사용자료는 2010~2018년의 시간, 수위, 유량, 수면폭 등 이다. 프로그램은 파이썬을 기반으로 한 머신러닝 라이브러리인 사이킷런(sklearn)을 사용하였고 알고리즘은 랜덤포레스트 회귀, 의사결정트리, KNN(K-Nearest Neighbor), rgboost을 적용하였다. 학습(train) 데이터는 입력자료 종류별로 조합하여 6개의 세트로 구분하여 모델을 구축하였고, 이를 적용해 검증(test) 데이터를 RMSE(Roog Mean Square Error)로 평가하였다. 그 결과 모델 및 입력 자료의 조합에 따라 3.67~171.46로 다소 넓은 범위의 값이 도출되었다. 그 중 가장 우수한 유형은 수위, 연도, 수면폭 3개의 입력자료를 조합하여 랜덤포레스트 회귀 모델에 적용한 경우이다. 비교를 위해 동일한 검증 데이터를 한국수문조사연보(2018년) 내거운교 지점의 수위별 수위-유량 곡선식을 이용해 유량을 추정한 결과 RMSE가 3.76이 산출되어, 머신러닝이 세분화된 수위-유량 곡선식과 비슷한 수준까지 성능을 내는 것으로 확인되었다. 본 연구는 양질의 유량자료 생산을 위해 기 구축된 수문자료를 기반으로 머신러닝 기법의 적용 가능성을 검토한 기초 연구로써, 국내 효율적인 수문자료 측정 및 수위-유량 곡선 산출에 도움이 될 수 있을 것으로 판단된다. 향후 수자원 환경 및 통제특성에 영향을 미치는 다양한 영향변수를 파악하기 위해 기상자료, 취수량 등의 입력 자료를 적용할 필요가 있으며, 머신러닝 내 비지도학습인 딥러닝과 같은 보다 정교한 모델에 대한 추가적인 연구도 수행되어야 할 것이다.

  • PDF

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.

Smart Farm Expert System for Paprika using Decision Tree Technique (의사결정트리 기법을 이용한 파프리카용 스마트팜 전문가 시스템)

  • Jeong, Hye-sun;Lee, In-yong;Lim, Joong-seon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.373-376
    • /
    • 2018
  • Traditional paprika smart farm systems are often harmful to paprika growth because they are set to follow the values of several sensors to the reference value, so the system is often unable to make optimal judgement. Using decision tree techniques, the expert system for the paprika smart farm is designed to create a control system with a decision-making structure similar to that of farmers using data generated by factors that depend on their surroundings. With the current smart farm control system, it is essential for farmers to intervene in the surrounding environment because it is designed to follow sensor values to the reference values set by the farmer. To solve this problem even slightly, it is going to obtain environmental data and design controllers that apply decision tree method. The expert system is established for complex control by selecting the most influential environmental factors before controlling the paprika smart farm equipment, including criteria for selecting decisions by farmers. The study predicts that each environmental element will be a standard when creating smart farms for professionals because of the interrelationships of data, and more surrounding environmental factors affecting growth.

  • PDF