• Title/Summary/Keyword: 트렐리스 시험

Search Result 2, Processing Time 0.015 seconds

Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests (편향 인장 및 트렐리스 시험에 의한 직물 복합재료의 면내 전단 물성 평가)

  • Lee, Won-Oh;Um, Moon-Kwang;Byun, Joon-Hyung;Cao, Jian
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • Three types of glass woven fabrics (plain, balanced twill, and unbalanced twill) having various sample sizes and aspect ratios were tested using the bias-extension tests. Real-time deformation images, force, and displacement data were collected. For the bias-extension test, the shear angle of the fabrics from the equation based on the crosshead displacement and fabric size was compared with direct manual measurements of the warp and weft angles as well as the optical measurement software. To determine the shear force, an analytical equation was introduced considering the kinematics of the bias-extension test. The obtained shear behaviors were further compared with the results by the trellis-frame test. The optical measurement methods showed that the mathematical method was reasonable before the shear angle of the fabrics reaches $30^{\circ}$ in the bias-extension tests. Also, the bias-extension test gave consistent behaviors with the trellis-frame test only for isotropic and homogeneous fabrics such as balanced plain and twill weaves.

Design and Implementation of 4D-8PSK TCM Simulator for Satellite Communication Systems (4D-8PSK TCM 위성통신 시스템 시뮬레이터 설계 및 구현)

  • Kim, Dohwook;Kim, Joongpyo;Kim, Sanggoo;Yoon, Dongweon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • In this paper, we design and implement the simulator for the transmitter and receiver of 4D-8PSK TCM with 2.0, 2.25, 2.5, and 2.75 bits/symbol-channel transmission efficiency recommended by the CCSDS for satellite communications, and then analyze the BER performance of 4D-8PSK TCM system in AWGN channel. The transmitter of 4D-8PSK TCM is designed in accordance with the recommendation in the CCSDS standard. Meanwhile, for the receiver design of 4D-8PSK TCM, we design the differential decoder generalizing the differential encoder/decoder scheme. The trellis decoding algorithm is designed by applying the auxiliary trellis information and the Viterbi algorithm, and an 8-dimensional constellation mapper equation given in the CCSDS standard is deconstructed to design constellation mapper. Especially, we present the optimized receiver for 4D-8PSK TCM system by investigating the BER performances for the traceback lengths in the Viterbi decoder through computer simulations..