• Title/Summary/Keyword: 트러스 모델

Search Result 151, Processing Time 0.031 seconds

Decomposition of Shear Resistance Components in Reinforced Concrete Beams (철근콘크리트 보의 전단저항 성분 분해)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.819-825
    • /
    • 2006
  • The objective of the present study is to verify the validity of a new truss model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. The new truss model is based on the relationship between shear and bending moment in a beam subjected to combined shear and bending. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. On the basis of the analytical results, the contribution by the web to shear resistance can be constant and have an excellent linear correlation with the web reinforcement ratio. The present decoupling approach may provide a simple way for the assessment of the role of each parameter or mechanism that affects the ultimate shear behavior of reinforced concrete beams.

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Strength Analysis of Pre-tensioned Concrete Deep Beams (프리텐션 콘크리트 깊은 보의 강도해석을 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Ha, Sang-Yong;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.193-194
    • /
    • 2009
  • In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behavior of pre-tensioned concrete deep beams is presented. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the strength analysis of pre-tensioned concrete deep beams by using the strut-tie model approaches of current design codes.

  • PDF

A Study on Analysis Modeling of Column Bracket Set in Traditional Wood Structures (전통 목구조 주심포의 해석 모델링에 관한 연구)

  • Park, Kyoung-Hoon;Choi, Hyun-Hoon;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.275-278
    • /
    • 2009
  • 전통 목구조 건축물은 크고 작은 부재가 많이 결구되어 있기 때문에 구조해석을 위한 모델링에 어려움이 있다. 기존에 제안된 모델링 기법은 모델링과 해석에 많은 시간이 필요하기 때문에 이를 개선할 수 있는 효율적인 방법이 필요하다. 본 연구에서는 전통 목구조 건축물 중 가장 많은 부재로 구성된 공포의 거동을 구현할 수 있으며 모델링과 해석에 소용되는 시간을 줄일 수 있는 모델링 기법을 제안하였다. 제안된 모델의 적합성을 확인하기 위하여 다양한 하중 재하 형태에 대한 유한요소 모델의 응답과 비교하였다. 해석결과에 따르면 제안된 모델의 응답은 유한요소해석결과와 10% 이내의 오차범위 안에 있어 공포의 해석시 보다 간편하게 활용할 수 있을 것이다.

  • PDF

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

Construction of Truss Bridge Database for 3-D Shape and Structural Analysis Information by using ISO10303 Application Protocols (ISO10303 응용프로토콜을 이용한 트러스교의 3차원 형상 및 해석정보 데이터베이스 구축)

  • Lim, Seung-Wan;Kim, Bong-Geun;Kim, Hyo-Jin;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2009
  • A web-based information management system to share engineering data of truss bridge is developed through construction of standardized database of truss bridge. 3D shape information is stored in database according to AP 203 of STEP, and 3D visualization on the web is implemented by using the web 3D technology that helps users to understand geometrical shape of structures, directly. AP209 is used to store structural analysis information such as finite elements, material properties, and analysis result into relational database. Based on the developed database, a prototype of integrated information management system for truss bridge is developed, and it provides additional information such as specifications and inspection information related with shape object to end users.

  • PDF

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

A Development of Torsional Analysis Model and Parametric Study for PSC Box Girder Bridge with Corrugated Steel Web (복부 파형강판을 사용한 PSC 복합 교량의 비틀림 해석모델의 제안 및 변수해석)

  • Lee, Han-Koo;Kim, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.281-288
    • /
    • 2008
  • The Prestressed Concrete (hereinafter PSC) box girder bridges with corrugated steel webs have been drawing an attention as a new structure type of PSC bridge fully utilizing the feature of concrete and steel. However, the previous study focused on the shear buckling of the corrugated steel web and development of connection between concrete flange and steel web. Therefore, it needs to perform a study on the torsional behavior and develop the rational torsional analysis model for PSC box girder with corrugated steel web. In this study, torsional analysis model is developed using Rausch's equation based on space truss model, equilibrium equation considering softening effect of reinforced concrete element and compatibility equation. Validation studies are performed on developed model through the comparison with the experimental results of loading test for PSC box girder with corrugated steel webs. Parametric studies are also performed to investigate the effect of prestressing force and concrete strength in torsional behavior of PSC box girder with corrugated steel web. The modified correction factor is also derived for the torsional coefficient of PSC box girder with corrugated steel web through the parametric study using the proposed anlaytical model.

Truss Models for Deformation Analyses of RC Members (트러스 모델을 이용한 RC 부재의 변형 해석)

  • 홍성걸;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.201-206
    • /
    • 2001
  • This paper presents truss model that can be used to determine the deformation as well as strength of RC members. This model is constituted to address plastic hinge rotation at tile deformation concentrated regions under severe lateral load. The behavior of each element of truss model is evaluated on the basis of stress field analysis. The deformation is obtained by combining element deformations with joint rotation. Initial strength is calculated at the first failure of any element, and strength deterioration after failure depends on the strength reduction of this element. The proposed model will provide useful tools in seismic design of ductility-required members.

  • PDF

A Study on the Design Automation of R/C Beam by the Finite Element Method and Truss Model Approach (유한요소법과 트러스모델에 의한 철근콘크리트 보 부재의 설계자동화에 관한 연구)

  • 엄대호;이정재;윤성수;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.119-123
    • /
    • 1998
  • New design automation method of R/C beam based on the finite element method and the nonlinear truss model approach has been presented. The proposed method can substitute inaccurate existing method, which has limitation in its application, provide accurate and efficient design results for any type of R/C beam.

  • PDF

Prediction on the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion by Truss Model (트러스 모델을 이용한 순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 박지선;김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1103-1108
    • /
    • 2001
  • ACI 318-99 predicts the torsional moment of reinforced concrete members by assuming that the angle of diagonal compressive concrete is equal to 45 degree. However, this angle depends on the difference of longitudinal and transverse steel ratios. This paper compares the torsional moments calculated by ACI 318-99 code and a truss model considering compatibility of strains. The comparison indicated that the torsion equation in ACI code underestimated the real torsional moment of reinforced concrete beam in which the ratio of longitudinal reinforcement was larger than that of transverse reinforcement.

  • PDF