• Title/Summary/Keyword: 트래픽제어

Search Result 1,089, Processing Time 0.024 seconds

Cell Coverage Based on Calculation of the Voice-Data Erlang Capacity in a WCDMA Reverse Link with Multi-rate Traffic (WCDMA 역방향 링크에서 다중속도 트래픽에 따른 음성/데이터 얼랑용량 계산과 셀 커버리지)

  • Kwon, Young-Soo;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.387-396
    • /
    • 2004
  • A scheme to evaluate the number of users and cell coverage of a WCDMA supporting multi-rate traffic is newly presented through calculation of the realizable Erlang capacity from a derived blocking probability and the path loss from the COST231 Walfisch-Ikegami(W) model. We evaluate the voice-data Erlang capacities at various data rates of 15 kbps to 960 kbps and it is shown that they have a linear relationship to each other. When the E$\_$b//N$\_$o/ is low from 4 ㏈ to 3 ㏈ in case of voice capacity of 50 Erlang at 8 kbps, the result shows the increase for the data capacity of 10 Erlang and the enlargement of 100 m for the cell coverage at low rate of 15 kbps, and the increase of 0.11 Erlang and the enlargement of 40 m at high rate of 960 kbps. The increase of the blocking probability results in the increase of the Erlang capacity, but not an effect on the cell coverage, and the increase of active users in a cell results in the decrease of the coverage.

Fast Handover Mechanism for Multi-Interface MIPv6 Environments and Performance Evaluation (다중 인터페이스 MIPv6 환경에서의 Fast Handover 방안 및 성능 분석)

  • Park, Man-Kyu;Hwang, An-Kyu;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.34-43
    • /
    • 2007
  • Recently, in addition to the sharp increase of mobile nodes, various kinds of wireless technologies are available for mobile nodes. If IPv6 technology is applied to the network, multi-homing terminals which have several public IP addresses on one interface will be common. Accordingly, there are many research activities on mobility management for multi-interface, multi-homming nodes. In this paper we propose an extended fast handover mechanism for multi-interface MIPv6 environments that uses multi-interface FBU (MFBU) message instead of the existing FBU message. The MFBU message has the "tunnel destination" mobility option that points a specific tunnel destination other than NAR, and "T" flag that indicates the existence of tunnel destination option. The proposed mechanism can improve the TCP performance by mitigating packet reordering during FMIPv6 handover that can cause unnecessary congestion control due to 3 duplicate ACKs. In this paper, we implemented a multi-Interface MIPv6 simulator by extending a single-interface MIPv6 simulator in NS-2, and showed that the performance of TCP traffic is improved by using the proposed multi-interface fast MIPv6.

A Network Adaptive SVC Streaming Protocol for Improving Video Quality (비디오 품질 향상을 위한 네트워크 적응적인 SVC 스트리밍 프로토콜)

  • Kim, Jong-Hyun;Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2010
  • The existing QoS mechanisms for video streaming are short of the consideration for various user environments and the characteristic of streaming applying programs. In order to overwhelm this problem, studies on the video streaming protocols exploiting scalable video coding (SVC), which provide spatial, temporal, and qualitative scalability in video coding, are progressing actively. However, these protocols also have the problem to deepen network congestion situation, and to lower fairness between other traffics, as they are not equipped with congestion control mechanisms. SVC based streaming protocols also have the problem to overlook the property of videos encoded in SVC, as the protocols transmit the streaming simply by extracting the bitstream which has the maximum bit rate within available bandwidth of a network. To solve these problems, this study suggests TCP-friendly network adaptive SVC streaming(T-NASS) protocol which considers both network status and SVC bitstream property. T-NASS protocol extracts the optimal SVC bitstream by calculating TCP-friendly transmission rate, and by perceiving the network status on the basis of packet loss rate and explicit congestion notification(ECN). Through the performance estimation using an ns-2 network simulator, this study identified T-NASS protocol extracts the optimal bitstream as it uses TCP-friendly transmission property and perceives the network status, and also identified the video image quality transmitted through T-NASS protocol is improved.

A Traffic Management Scheme for the Scalability of IP QoS (IP QoS의 확장성을 위한 트래픽 관리 방안)

  • Min, An-Gi;Suk, Jung-Bong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.375-385
    • /
    • 2002
  • The IETF has defined the Intserv model and the RSVP signaling protocol to improve QoS capability for a set of newly emerging services including voice and video streams that require high transmission bandwidth and low delay. However, since the current Intserv model requires each router to maintain the states of each service flow, the complexity and the overhead for processing packets in each rioter drastically increase as the size of the network increases, giving rise to the scalability problem. This motivates our work; namely, we investigate and devise new control schemes to enhance the scalability of the Intesev model. To do this, we basically resort to the SCORE network model, extend it to fairly well adapt to the three services presented in the Intserv model, and devise schemes of the QoS scheduling, the admission control, and the edge and core node architectures. We also carry out the computer simulation by using ns-2 simulator to examine the performance of the proposed scheme in respects of the bandwidth allocation capability, the packet delay, and the packet delay variation. The results show that the proposed scheme meets the QoS requirements of the respective three services of Intserv model, thus we conclude that the proposed scheme enhances the scalability, while keeping the efficiency of the current Intserv model.

Design and Performance Analysis of Hybrid Receiver based on System Level Simulation in Backhaul System (백홀 시스템에서 시스템 레벨 시뮬레이션 기반 하이브리드 수신기 설계 및 성능 분석)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.3-11
    • /
    • 2015
  • An advanced receiver which can manage inter-cell interference is required to cope with the explosively increasing mobile data traffic. 3rd Generation Partnership Project (3GPP) has discussed network assisted interference cancellation and suppression (NAICS) to improve signal-to-noise-plus-interference ratio (SINR) and receiver performance by suppression or cancellation of interference signal from inter-cells. In this paper, we propose the advanced receiver based on soft decision to reduce the interference from neighbor cell in LTE-Advanced downlink system. The proposed receiver can suppress and cancel the interference by calculating the unbiased estimation value of interference signal using minimum mean square error (MMSE) or interference rejection combing (IRC) receiver. The interference signal is updated using soft information expressed by log-likelihood ratio (LLR). We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced downlink system. Simulation results show that the proposed receiver can improve SINR, throughput, and spectral efficiency of conventional system.

A Multi-Dimensional Node Pairing Scheme for NOMA in Underwater Acoustic Sensor Networks (수중 음향 센서 네트워크에서 비직교 다중 접속을 위한 다차원 노드 페어링 기법)

  • Cheon, Jinyong;Cho, Ho-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2021
  • The interest in underwater acoustic sensor networks (UWASNs), along with the rapid development of underwater industries, has increased. To operate UWASNs efficiently, it is important to adopt well-designed medium access control (MAC) protocols that prevent collisions and allow the sharing of resources between nodes efficiently. On the other hand, underwater channels suffer from a narrow bandwidth, long propagation delay, and low data rate, so existing terrestrial node pairing schemes for non orthogonal multiple access (NOMA) cannot be applied directly to underwater environments. Therefore, a multi-dimensional node pairing scheme is proposed to consider the unique underwater channel in UWASNs. Conventional NOMA schemes have considered the channel quality only in node pairing. Unlike previous schemes, the proposed scheme considers the channel gain and many other features, such as node fairness, traffic load, and the age of data packets to find the best node-pair. In addition, the sender employs a list of candidates for node-pairs rather than path loss to reduce the computational complexity. The simulation results showed that the proposed scheme outperforms the conventional scheme by considering the fairness factor with 23.8% increases in throughput, 28% decreases in latency, and 5.7% improvements in fairness at best.

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.