• Title/Summary/Keyword: 트라이볼로지적 거동

Search Result 189, Processing Time 0.019 seconds

Review on the Wear behavior of the Hot Stamping Process with Respect to Friction Testing Methods (마찰 방법에 따른 핫스탬핑 마모 거동의 연구 동향)

  • Ji, Min-Ki;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.350-358
    • /
    • 2020
  • Hot stamping is an effective and suitable process widely used in automotive applications, though critical issues such as the transfer of the coating materials and build-up of these materials on tool surfaces have been encountered. Past researches figured out the resultant wear phenomenon using pin-on-disc and drawing (for example, strip drawing and deep drawing) methods to mimic the process and analyzed the wear behavior with respect to the influencing factors such as surface coating, load, and roughness. Although the pin-on-disc is a conventional and widely-used method, it presented a methodological limitation when simulating the hot stamping process by forming a new blank each time, and hence, a drawing-based friction method has been proposed and developed. Each drawing method applies loads in a different way, resulting in a different wear behavior. Notably, the deep drawing process is most similar to the hot stamping process compared to other drawing methods. In this paper we present a review of the friction testing methods mimicking the hot stamping process and the associated wear behavior. This can be helpful in presenting a step-by-step approach and different perspectives on the wear behavior in the hot stamping process.

Sliding Wear Behavior of Carbon Steel in changing Sliding Speed (Effects of Mild Wear Mode Test on subsequent Severe Wear Behavior) (미끄럼 속도변화에 따른 철강재료의 미끄럼 마모거동 (중마모 거동에 미치는 연마모 도입시험의 영향))

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • In this study, the effect of the pre-mild wear mode test condition on the subsequent severe wear behavior of carbon steel has been investigated when the wear mode is varied according to the sliding speed change during sliding contact. Two sliding speeds of 0.3 m/s and 3 m/s for the mild wear mode test have been chosen and a sliding speed of 1 m/s for the severe wear mode test. A mild wear mode test at two different sliding speeds has been carried out during the severe wear mode test and total sliding distance of the mild wear mode test has been changed at this time. As a result, it could be found that the wear rate of carbon steel under the severe wear mode test after performing a pre-mild wear mode test is significantly reduced, compared with that before performing. However, its wear rate was slightly higher than that under the mild wear mode test. Oxides produced during the pre-mild wear mode test have been found to play a significant role in reducing the wear rate under the subsequent severe wear mode test. In particular, it was found that the effect of a pre-mild wear mode test performed at the sliding speed of 3 m/s has more rapid and the reduction in the wear rate was greater than thst at the sliding speed of 0.3 m/s.

Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector (고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구)

  • Ryu, Daewon;Kim, Dongjun;Park, Sang-Shin;Ryu, Bongwoo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

Numerical Analysis Study on Micro-plastic Particle behavior According to the Shape of Cyclone Separator (Cyclone separator의 형상에 따른 미세플라스틱 입자 거동 수치해석 연구)

  • Insun Kang;Wonjun Seo;Dongho Yu;Yeongshik Kim;Hyeungchul Kim;Seokyeon Im
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.61-66
    • /
    • 2024
  • Micro-plastics are synthetic high-differentiation chemicals of less than 5mm in size, and are deposited not only on the sea surface but also on the coast. If these micro-plastics are not properly separated from the sand, they can threaten marine ecosystems. Thus, in the present study, we aimed to apply cyclone separator to the micro-plastic retrieval in order to predict the movement of particles according to the formation of the cyclone separator by applying the centrifugal force of the particle in accordance with the rotational movement of the air. The cyclone separator has three shapes, the first one is a typical interconnected cyclone separator. The second is the horn form, except for the cylinder in a regular cyclone separator, and the third is a form that increases the horn's height twice in the second. The numerical analysis simulation of the Cyclone separator used the Fluent software package. The output speed of the Cyclone separator was 5 to 13m/s at 1m/s intervals. The simulated particles include sand, Styrofoam, PET, PP, and PU. Sand particles are assigned a fixed diameter of 2mm, while other particles have a diameter of 3mm. As a result of the analysis, the first form was not separated from plastic. The Styrofoam separation efficiency in the second showed its highest efficiency at 72.7% at 7m/s, and the efficiency decreased after 12m/s as the sand particles were mixed into the plastic attachment location. In the third form, the separation efficiency of Styrofoam at 12m/s was highest at 67.9%.

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

A study on wear mechanism of tube fretting affected by support shapes (지지부 형상에 따른 튜브 프레팅 마멸기구의 연구)

  • Lee, Yeong-Ho;Kim, Hyeong-Gyu;Ha, Jae-Uk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.73-79
    • /
    • 2002
  • Fretting wear test in room temperature air was performed to evaluate the wear mechanism of fuel rod using a fretting wear tester, which has been developed for experimental study. The main focus was to compare the wear behaviors of fuel rod against support springs at different contact geometries (i.e. concave and convex) and slip directions (axial and transverse). The wear on the tube was examined by the surface roughness tester, which measures the volume. The result indicated that with change of contact geometry from 5N of normal load to 0.1mm gap, wear volume of tube Increased in the condition of concave spring, but slowly decreased in convex spring. From the results of SEM observation, wear mechanism of each test condition was also depend on the above contact parameters. The wear mechanism of each test condition in room temperature air is discussed.

  • PDF

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

Effects of Carburizing Process on Sliding wear Behavior of Carburized SCM420H Steel (침탄처리한 SCM420H의 미끄럼 마모 특성에 미치는 침탄 조건의 영향)

  • Lee, Han-Young;Lee, Kyu-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • The effects of the carburizing process on the sliding wear behavior of SCM420H steel have been investigated. In particular, the effects of grain boundary corrosion observed in the surface layer after gas carburizing and the effects of hardness of the carburized cases after heat-treatment on the sliding wear properties were examined. Pin specimens carburized by two methods (gas carburizing and vacuum carburizing) were tempered at two temperatures of 180℃ and 400℃ after oil-quenching, respectively. Sliding wear tests were carried out against heattreated SKH51 steel at several sliding speeds using a pin-on-disc type test machine. As results, it can be found that there is no difference in the wear behavior between the pins carburized using two methods. This implies that the grain boundary corrosion that formed in the surface layer after gas carburizing has no effect on the sliding wear behavior of carburized SCM420H steels. Additionally, there is no significant difference in the wear behavior between carburized pins tempered at 400℃ and at 180℃ after oil-quenching, regardless of the carburizing method. This is because carburized pins tempered at 400℃ have a troostite structure, which exhibits higher tribochemical reactivity even though its hardness is lower than that of martensite structure. In this respect, it can be considered that good wear resistance of carburized cases is maintained at least until the effective case depth.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.