• Title/Summary/Keyword: 튜브 충격파

Search Result 5, Processing Time 0.021 seconds

Aerodynamic Characteristics of a Tube Train (튜브 트레인 공력특성 해석)

  • Kim, Tae-Kyung;Kim, Kyu-Hong;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.139-150
    • /
    • 2010
  • Recently, full-scale research about a passenger tube train system is being progressed as a next-generation transportation system in Korea in light of global green technology. The Korea Railroad Research Institute (KRRI) has commenced official research on the construction of a tube train system. In this paper, we studied various parameters of the tube train system such as the internal tube pressure, blockage ratio, and operating speed through computational analysis with a symmetric and elongated vehicle. This study was about the aerodynamic characteristics of a tube train that operated under standard atmospheric pressure (open field system, viz., ground) and in various internal tube environments (varying internal tube pressure, blockage ratio, and operating speed) with the same shape and operating speed. Under these conditions, the internal tube pressure was calculated when the energy efficiency had the same value as that of the open field train depending on various combinations of the operating speed and blockage ratio (the P-D relation). In addition, the dependence of the relation between the internal tube pressure and the blockage ratio (the P-${\beta}$ relation) was shown. Besides, the dependence of the relation between the total drag and the operating speed depending on various combinations of the blockage ratio and internal tube pressure (the D-V relation) was shown. Also, we compared the total (aerodynamic) drag of a train in the open field with the total drag of a train inside a tube. Then, we calculated the limit speed of the tube train, i.e., the maximum speed, for various internal tube pressures (the V-P relation) and the critical speed that leads to shock waves under various blockage ratios, which is related to the efficiency of the tube train (the critical V-${\beta}$ relation). Those results provide guidelines for the initial design and construction of a tube train system.

  • PDF

Experimental study on the Supersonic Jet Noise and Its Prediction (초음속 제트에서의 유동 특성 및 소음 예측에 관한 연구)

  • Lim, Dong-Hwa;Ko, Young-Sung;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • this paper the acoustic signature from a supersonic nozzle is measured and compared to the result of a program developed for a gas turbine noise prediction. In order to measure the jet Mach Number, the pressure and temperature at the settling chamber was measured along with pressures from a pitot-tube placed near the exit. The results are also compared to the ones obtained with a shadow graph technique. Jet noise produced by an imperfectly expanded jet contains shock associated noise, which consist of broadband noise and screech tone noise. For subsonic condition, the directivity is dominant to the downstream direction due to turbulence mixing noise. For supersonic conditions, however, the directivity is dominant toward upstream direction due to shock associated noise. The comparison with a jet exhaust noise prediction code shows good agreement at supersonic conditions but needs to be improved at subsonic speeds.

Self-ignition of high-pressure hydrogen gas released into tube (튜브내 고압수소가스 누출에 따른 자발점화 현상 유동가시화 연구)

  • Kim, Yeong Ryeon;Lee, Hyoung Jin;Kim, Sei Hwan;Jeung, In Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.247-248
    • /
    • 2012
  • Unidentified self-ignitions were reported when the high-pressure hydrogen gas suddenly leaked out. This paper presents a flow visualization study to investigate the self-ignition mechanism in a test tube how the ignition process is initiated and the flame propagates with measurement of a number of pressure and light sensors installed in the tube supported the analysis of the self-ignition. The test result showed the location of the self-ignition taken place and critical static pressure at the boundary layer for self-ignition.

  • PDF

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite (CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성)

  • Kim, Gisuk;Kim, Moojoon;Ha, Kanglyeol;Lee, Jooho;Paeng, Dong-Guk;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

A Study on the Flow Characteristics in the Upstream- and Downstream-Diaphragm Ludwieg Tubes (상류막 방식과 하류막 방식의 Ludwieg Tube에서 발생하는 유동특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.363-366
    • /
    • 2010
  • Among the many different types of wind tunnels, Ludwieg Tube(LT) is the most suitable facility for high Reynolds number testing. Depending on the location of diaphragm, there are two types of LTs. In the present study, a computational work has been carried out to compare the operation characteristics of upstream- and downstream-diaphragm LTs. Two-dimensional, axisymmetric, unsteady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. Based on the present results, the flow mechanism of the starting process was discussed in detail using wave diagrams and characteristics of starting time and working time were investigated.

  • PDF