• Title/Summary/Keyword: 튜브 구조물

Search Result 142, Processing Time 0.024 seconds

Shear Lag in Framed Tube Structures with Multiple Internal Tubes (복수의 내부 튜브를 가진 골조 튜브 구조물의 Shear Lag)

  • 이강건;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • A simple numerical modelling technique is proposed for estimating the shear lag effects of framed-tube system with multiple internal tubes. The tube(s)-in-tube structure is analysed by using an analogy approach in which each tube is individually modelled by a beam that can accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear lag phenomenon of such structures is studied with additional bending stresses. Structural parameters governing the shear lag behaviour in tube(s)-in-tube structures are also investigated through thirty-three numerical examples.

  • PDF

Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s) (내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석)

  • Lee, Kang-Kun;Lee, Lee-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.511-521
    • /
    • 2002
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures arc analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in conjunction with the elastic theory By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of lineal functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. Previous studies for axial stresses and shear lag phenomenon are further developed lot the numerical analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated through the solutions of throe numerical examples.

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test (초고속 튜브철도 시스템을 위한 튜브 구조물의 기밀성 평가 : I. 해석모델 수립 및 재료 기밀성)

  • Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.

Nanotubular Structures of Oxides and Their Applications (산화물 나노튜브 구조체 제작 방법 및 그 응용)

  • Yoo, Hyun-Jun;Bae, Chang-Deuck;Kim, Hyun-Chul;Yoon, Young-Jin;Kim, Myung-Jun;Shin, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • One-dimensional nanostructures have been researched widely because of its unique physical properties such as optical, electrical, mechanical, and chemical properties in comparison with bulk structures. Especially nanotubular structures are able to provide larger surface area, capability to load purposeful materials, and unique mechanical modulus. We reviewed the oxide nanotube technology with focusing on the method of template-directed fabrication. We can easily control of physical dimensions of nanotubes by control of nanotemplate and fabrication condition. and template-directed fabrication is ideal tool to fabricate the amount of monodisperse nanotubes. They have potentials for application in solar cell, drug-delivery, Li-ion batteries and photocatalyst. We discussed these potential applications and research trends.

Parametric Study on the Capacity of Vacuum Pump for Tube Structure (튜브열차 구조물의 진공 펌프 용량에 관한 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.516-520
    • /
    • 2010
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube structure under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the super high speed, the inside of tube system should be maintained at low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make low pressure state for tube structure, exhaust the leakage air and supplement additional vacuum pumping. As results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be applied to analyze the effects of the reduction of air resistance.

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis (초고속 열차 시스템을 위한 튜브 구조물의 기밀성 평가 : II. 시스템 실험 및 파라메터 해석)

  • Park, Joo-Nam;Kim, Lee-Hyeon;Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2011
  • This study performed an experimental study for air-tightness performance evaluation of concrete tube structures with joints. The test specimens consist of a continuous concrete tube, a concrete tube with a joint in the middle, and a segmented concrete tube. The test is performed in such a way that the inner pressure of the tube is dropped down to 0.1atm and the increase of the pressure is monitored with time. An equivalent air permeability is then calculated based on the test results. The results show that, as expected, a structure with more joints or bonds tends to be less air-tight. A sensitivity study shows that the system air-tightness performance level becomes higher as either the diameter or the thickness of the tube increases. Moreover, the increase in the diameter or the thickness of the tube makes an effort to enhance the air-tightness more effective.

Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites (탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단)

  • Park, Young-Bin;Pham, Giang T.;Wang, Ben;Kim, Sang-Woo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents an experimental study on the piezoresistive behavior of nanocomposite strain sensors subjected to various loading modes and their capability to detect structural deformations and damages. The electrically conductive nanocomposites were fabricated in the form of a film using various types of thermoplastic polymers and multi-walled carbon nanotubes (MWNTs) at various loadings. In this study, the nanocomposite strain sensors were bonded to a substrate and subjected to tension, flexure, or compression. In tension and flexure, the resistivity change showed dependence on measurement direction, indicating that the sensors can be used for multi-directional strain sensing. In addition, the sensors exhibited a decreasing behavior in resistivity as the compressive load was applied, suggesting that they can be used for pressure sensing. This study demonstrates that the nanocomposite strain sensors can provide a pathway to affordable, effective, and versatile structural health monitoring.

An Experimental Test for Air-tightness Performance Evaluation of Cracked Concrete Vacuum Tube Structures (콘크리트 진공튜브의 균열 발생에 따른 기밀성능 평가 실험)

  • Park, Joonam;Park, Hyeong-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.377-385
    • /
    • 2018
  • Super-speed vacuum tube system, where the air resistance is minimized to obtain high speed of the vehicle, is considered to be a viable alternative transportation system. Air-tightness is one of the most important design requirements of the system, because the internal pressure of the system needs to be maintained significantly lower than the atmospheric pressure. This study performed an experimental test, where a series of concrete tube specimens were applied by external loads to induce cracks and the effective air-permeability of the cracked tube structures were measured. The test results indicates that the information on the length and the width of the load-induced cracks are not enough to anticipate the system air-tightness, whereas the load-induced displacement has higher correlation with the systems air-tightness. Based on these results, a direction of future research for effect of the load-induced cracks on the system air-tightness is suggested.

The Construction Technology and the Environmental Effect of Geotextile Tube (지오텍스타일 튜브의 시공방법 및 환경적 영향에 관한 연구)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.137-145
    • /
    • 2001
  • 지오텍스타일 튜브공법은 준설토, 준설모래, 오염토사 등을 수리학적 채움을 통하여 해양구조물이나 수리학적 구조물을 축조하는 공법이다. 본 연구에서는 지오튜브공법의 국내적용을 위하여, 미국공병단의 최소 요구사항을 바탕으로 지오텍스타일을 선정하여 다양한 실내시험과 현장 적용성 시험을 실시하였다. 실내시험은 지오텍스타일과 토사간의 접촉마찰특성 분석을 위하여 대형직접전단시험을 실시하였으며, 해양구조물 설치시 파도와 조수의 영향으로 인한 토사유출량 분석을 위한 유실율시험을 실시하였다. 또한, 오염토사를 채움토사로 적용할 경우에 장.단기 환경적 영향에 대한 환경시험을 실시하였다. 현장시험은 실내모형시험을 바탕으로 토사와 물의 슬러리 혼합비율에 따른 지오텍스타일 튜브 채움방법 및 유효높이 및 단위중량 등의 계측을 실시하였다. 각종 실내 및 현장시험결과, 채움토사입자의 유실율은 약 5.0~6.0%를 유지하였으며, 지오텍스타일의 투수계수는 $\alpha$$\times$$10^{-4}$cm/sec 이상이 되어야 하며, 물과 토사의 혼합비율은 6:4이상이 되어야 한다. 환경적 영향 분석결과, 오염토사의 적용시 국내환경기준을 만족하는 것으로 나타났다. 또한, 수리학적 펌핑 압력에 대한 지오텍스타일 튜브의 최대 유효높이는 튜브 전체높이의 약 80%의 채움이 완료되었을 시점인 것으로 판단된다.다.

  • PDF

Design and Fabrication of Composite Sandwich Payload Platform and Strut Tubes for Satellite Main Body Structures (인공위성 본체 복합재료 샌드위치 플랫폼 및 튜브 스트럿 구조물의 설계 및 제작)

  • Roh, Hui-Seok;Choi, Heung-Seop;Ha, Jae-Seon;Son, Won-Gi;Kim, Cheol;Lee, Ju-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.228-232
    • /
    • 2002
  • 본 연구에서는 다목적 실용위성 2호기에 적용된 금속 구조물 중 알루미늄 샌드위치 패널 구조인 탑재체 플랫폼과 튜브 스트럿(tube strut) 구조에 복합재료 응용기술을 적용하였다. 복합재료 구조로의 대체 설계에서도 관성하중 및 음향진동등과 같은 극심한 발사환경과 더불어 운용하게 될 우주 열환경을 고려하였다. 연구의 목적은 금속소재보다 비강도, 비강성이 우수한 복합재료를 위성 구조물에 사용함으로써 무게를 경량화함에 있다.

  • PDF