• Title/Summary/Keyword: 튜브형 단면겹치기 접착조인트

Search Result 3, Processing Time 0.016 seconds

Fatigue Failure Model for the Adhesively Bonded Tubular Single Lap Joint Under Torsional Fatigue Loadings (비틀림 하중하에서의 튜브형 단면겹치기 접착조인트의 피로파괴모델에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1869-1875
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows a nonlinear relationship between the applied torque and the resulting displacement under the static-torsional loading, which is induced from the nonlinear properties of the adhesive. However the torque transmission capability in the case of the dynamic-torsional loading is much less than that in the case of the static-torsional loading, the stress level of the adhesive is usually in the region of the linear stress and strain relation and the stress distributions of the joint can be obtained by the linear analysis. In this paper, a failure model for the adhesively bonded tubular single lap joint under the torsional fatigue loading was developed with respect to the adhesive thickness that was a critical factor in predicting the static torque transional-cyclic loadings was proposed.

Nonlinear Iterative Solution for Adhesively Bonded Tubular Single Lap Joints with Nonlinear Shear Properties (튜브형 단면겹치기 접착조인트의 비선형 반복연산해에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1651-1656
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.

Failure Model for the Adhesively Bonded Tubular Single Lap Joints Under Static Tensile Loads (축방향하중에 대한 튜브형 단면겹치기 접착조인트의 전적 파괴모델에 관한 연구)

  • Kim, Yeong-Gu;Lee, Su-Jeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1543-1551
    • /
    • 1996
  • The static tensile load bearing capability of as adhesively-bonded tubular single lap jint that is calculated usign the linear mechanical properties of adhesive is usually far from the experimentally determined because the majority of the load transfer of the adhesively-bonded jointd is accomplished by the nonlinear behavior of the rubber-toughened eoxy adhesive. In this paper, both the nonlinear mechanical properties and the fabrication residual thermal stresses of adhesive were included in the calculation of the stresses of adhesively-bonded joints. The onlinear tensile properties of adhesive were approximated by an exponential form which was represented by the initial tensile modulus and ultimate tensile stength of adhesive. The stress distribution in the adhesive were calculated by applying the load obtained from the tensile tests. From the tensile tests and the stress analysis of adhesively-bonded hoints, the failure model for adhesively-bonded tubular single lap joints was proposed.