Proceedings of the Korea Society for Simulation Conference
/
2000.04a
/
pp.180-185
/
2000
발전소 등의 대규모 공정 플랜트에서 사용하고 있는 대부분의 상용 제어기는 PID 제어기이며, 온도 루프를 제외한 대부분의 제어루프가 PI 제어기를 채용하고 있다. 제어 시스템의 성능이 제어기 파라미터의 값에 의해 결정되므로, PI 제어기의 튜닝이 중요하다. 한편, 실제 현장에서의 PI 제어기의 튜닝은 많은 시간과 노력을 필요로 하는 시행착오에 의해서 이루어지고 있으며, 각 제어 루프 제어기 파라미터의 초기값 설정에 어려움을 갖고 있는 실정이다. PI 튜닝 기법이 많이 나와 있지만 시험 신호의 인가 문제로 인해 현장 활용에는 많은 어려움을 가지고 있다. 본 논문에서는 단순한 시험 신호로부터 PI 초기 설정값을 산출할 수 있는 방법에 대해서 알아본다. 또한 발전소에 적용된 국산 분산 제어 시스템을 보면, 대부분 데이터 로깅 시스템으로서만 활용되고 있고, 제어 시스템으로의 활용은 거의 이루어지지 않고 있으며, PID제어기에 대한 구현도 완벽하지 못하여 디지털 PI 제어기의구현 방법에 대한 고찰도 요구되고 있다. 본 논문에서는 디지탈 PI 제어기를 구현하는데 있어서 필요한 사항들, 즉 아날로그 제어기의 디지털 등가 제어기로의 변환 기법, 샘플링 주기의 결정 방법, 그리고 그 외에 공정 제어기가 가져야할 기능들에 대해서 언급한다. 그리고나서 PI 튜닝 기법과 아날로그 제어기의 디지털 등가 제어기로의 변환기법, 샘플링 주기 결정 방법 등에 대해 플랜트 모델을 선정하고 시뮬레이션을 통해 그 효용성을 보인다.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.3
/
pp.1-12
/
2024
In this paper, we fine-tuned KoAlpaca, a large-scale Korean language model, and implemented a blog text generation system utilizing it. Blogs on social media platforms are widely used as a marketing tool for businesses. We constructed training data of positive reviews through emotion analysis and refinement of collected sponsored blog texts and applied QLoRA for the lightweight training of KoAlpaca. QLoRA is a fine-tuning approach that significantly reduces the memory usage required for training, with experiments in an environment with a parameter size of 12.8B showing up to a 58.8% decrease in memory usage compared to LoRA. To evaluate the generative performance of the fine-tuned model, texts generated from 100 inputs not included in the training data produced on average more than twice the number of words compared to the pre-trained model, with texts of positive sentiment also appearing more than twice as often. In a survey conducted for qualitative evaluation of generative performance, responses indicated that the fine-tuned model's generated outputs were more relevant to the given topics on average 77.5% of the time. This demonstrates that the positive review generation language model for sponsored content in this paper can enhance the efficiency of time management for content creation and ensure consistent marketing effects. However, to reduce the generation of content that deviates from the category of positive reviews due to elements of the pre-trained model, we plan to proceed with fine-tuning using the augmentation of training data.
Automatic speech recognition (ASR) has been revolutionized with deep learning-based approaches, among which self-supervised learning methods have proven to be particularly effective. In this study, we aim to enhance the performance of OpenAI's Whisper model, a multilingual ASR system on the Korean language. Whisper was pretrained on a large corpus (around 680,000 hours) of web speech data and has demonstrated strong recognition performance for major languages. However, it faces challenges in recognizing languages such as Korean, which is not major language while training. We address this issue by fine-tuning the Whisper model with an additional dataset comprising about 1,000 hours of Korean speech. We also compare its performance against a Transformer model that was trained from scratch using the same dataset. Our results indicate that fine-tuning the Whisper model significantly improved its Korean speech recognition capabilities in terms of character error rate (CER). Specifically, the performance improved with increasing model size. However, the Whisper model's performance on English deteriorated post fine-tuning, emphasizing the need for further research to develop robust multilingual models. Our study demonstrates the potential of utilizing a fine-tuned Whisper model for Korean ASR applications. Future work will focus on multilingual recognition and optimization for real-time inference.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.623-626
/
2024
최근 거대 언어 모델의 발전으로 프로그램 합성 분야에서 활용되고 있는 코드 생성 언어 모델의 보안적 측면에 대한 중요성이 부각되고 있다. 그러나, 이를 위해 모델 전체를 재학습하기에는 많은 자원과 시간이 소모된다. 따라서, 본 연구에서는 효율적인 미세조정 방식 중 하나인 프롬프트 튜닝으로 코드 생성 언어 모델이 안전한 코드를 생성할 확률을 높이는 방법을 탐구한다. 또한 이에 따른 기능적 정확성 간의 상충 관계를 분석한다. 실험 결과를 통해 프롬프트 튜닝이 기존 방법에 비해 추가 파라미터를 크게 줄이면서도 보안률을 향상시킬 수 있음을 알 수 있었다. 미래 연구 방향으로는 새로운 조정 손실함수와 하이퍼파라미터 값을 조정하여 성능을 더욱 향상시킬 수 있는지 조사할 것이다. 이러한 연구는 보다 안전하고 신뢰할 수 있는 코드 생성을 위한 중요한 발전을 이끌 수 있을 것으로 기대된다.
Proceedings of the Korean Information Science Society Conference
/
2000.10c
/
pp.505-507
/
2000
이동 컴퓨팅에서 사용되는 단말기는 배터리의 제약과 이동통신망의 높은 장애율로 사용에 불편을 느낀다. 여러 mobile client는 공통 관심이 있는 데이터를 서버로부터 받는 방법으로 broadcasting을 많이 쓰는데, 이때 indexing 기법을 이용해 클라이언트는 원하는 데이터를 filtering해서 수신함으로서 에너지의 효율적 사용을 기할 수 있다. index를 중복시킴으로써 원하는 데이터 접근(access) 시간을 줄이고 무선 통신망의 장애에 따른 성능저하를 줄일 수 있다. 본 논문에서는 K-level indexing 기법을 위한 장애율에 따른 최적의 중복회수를 구하고 데이터 수신시 데이터 시간과 튜닝(tuning)시간을 구한다.
A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.
Journal of the Korea Society of Computer and Information
/
v.24
no.11
/
pp.51-59
/
2019
Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.622-624
/
2021
현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.
빅 데이터의 시대가 도래하면서 이전보다 데이터로부터 유의미한 정보를 추출하는 것에 대한 연구가 활발하게 진행되고 있다. 딥러닝은 텍스트, 이미지, 동영상 등 다양한 데이터에 대한 학습을 가능하게 할 뿐만 아니라 높은 학습 정확도를 보임으로써 차세대 머선러닝 기술로 각광 받고 있다. 그러나 딥러닝은 일반적으로 학습해야하는 데이터가 많을 뿐만 아니라 학습에 요구되는 시간이 매우 길다. 또한 데이터의 전처리 수준과 학습 모델 튜닝에 의해 학습정확도가 크게 영향을 받기 때문에 활용이 어렵다. 딥러닝에서 학습에 요구되는 데이터의 양과 연산량이 많아지면서 분산 처리 프레임워크 기반 분산 학습을 통해 학습 정확도는 유지하면서 학습시간을 단축시키는 사례가 많아지고 있다. 본 연구에서는 범용 분산 처리 프레임워크인 아파치 스파크에서 데이터 병렬화 기반 분산 학습 모델을 활용하여 모바일 빅 데이터 분석을 위한 딥러닝을 구현한다. 딥러닝을 구현할 때 분산학습을 통해 학습 속도를 높이면서도 학습 정확도를 높이기 위한 모델 튜닝 방법을 연구한다. 또한 스파크의 분산 병렬처리 효율을 최대한 끌어올리기 위해 파티션 병렬 최적화 기법을 적용하여 딥러닝의 학습속도를 향상시킨다.
This paper introduces orthogonally multiplexed modulation and demodulation methods based on Wavelet Packet Bases and particularly describes Wavelet Packet Modulation (WPM) techniques that provide the designer of transmission signal set in time-frequency domain with tree structural information which can be adapted to given channel characterristics. Multi-dimensional signaling methods are also contrasted to common and different characteristics of conventional QAM. multi-tone modulation methods. The paper addresses the mothod how to find a best tree structure that has more adaptivity to impulse and narrowband tone pulse noises using a tunning algorithm which arbitrarily partitions the time-frequency space and makes a suitable orthogonal signaling waveforms. Simulation results exhibits a favorable performance over existing mod/demod methods specially for narrowband tone pulse and impulse interferences.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.