• Title/Summary/Keyword: 튜닝 시간

Search Result 86, Processing Time 0.021 seconds

Survey of Implementation of a Digital PI Controller (디지털 PI 제어기 구현에 관한 고찰)

  • 변승현;마복렬
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.180-185
    • /
    • 2000
  • 발전소 등의 대규모 공정 플랜트에서 사용하고 있는 대부분의 상용 제어기는 PID 제어기이며, 온도 루프를 제외한 대부분의 제어루프가 PI 제어기를 채용하고 있다. 제어 시스템의 성능이 제어기 파라미터의 값에 의해 결정되므로, PI 제어기의 튜닝이 중요하다. 한편, 실제 현장에서의 PI 제어기의 튜닝은 많은 시간과 노력을 필요로 하는 시행착오에 의해서 이루어지고 있으며, 각 제어 루프 제어기 파라미터의 초기값 설정에 어려움을 갖고 있는 실정이다. PI 튜닝 기법이 많이 나와 있지만 시험 신호의 인가 문제로 인해 현장 활용에는 많은 어려움을 가지고 있다. 본 논문에서는 단순한 시험 신호로부터 PI 초기 설정값을 산출할 수 있는 방법에 대해서 알아본다. 또한 발전소에 적용된 국산 분산 제어 시스템을 보면, 대부분 데이터 로깅 시스템으로서만 활용되고 있고, 제어 시스템으로의 활용은 거의 이루어지지 않고 있으며, PID제어기에 대한 구현도 완벽하지 못하여 디지털 PI 제어기의구현 방법에 대한 고찰도 요구되고 있다. 본 논문에서는 디지탈 PI 제어기를 구현하는데 있어서 필요한 사항들, 즉 아날로그 제어기의 디지털 등가 제어기로의 변환 기법, 샘플링 주기의 결정 방법, 그리고 그 외에 공정 제어기가 가져야할 기능들에 대해서 언급한다. 그리고나서 PI 튜닝 기법과 아날로그 제어기의 디지털 등가 제어기로의 변환기법, 샘플링 주기 결정 방법 등에 대해 플랜트 모델을 선정하고 시뮬레이션을 통해 그 효용성을 보인다.

  • PDF

Generating Sponsored Blog Texts through Fine-Tuning of Korean LLMs (한국어 언어모델 파인튜닝을 통한 협찬 블로그 텍스트 생성)

  • Bo Kyeong Kim;Jae Yeon Byun;Kyung-Ae Cha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • In this paper, we fine-tuned KoAlpaca, a large-scale Korean language model, and implemented a blog text generation system utilizing it. Blogs on social media platforms are widely used as a marketing tool for businesses. We constructed training data of positive reviews through emotion analysis and refinement of collected sponsored blog texts and applied QLoRA for the lightweight training of KoAlpaca. QLoRA is a fine-tuning approach that significantly reduces the memory usage required for training, with experiments in an environment with a parameter size of 12.8B showing up to a 58.8% decrease in memory usage compared to LoRA. To evaluate the generative performance of the fine-tuned model, texts generated from 100 inputs not included in the training data produced on average more than twice the number of words compared to the pre-trained model, with texts of positive sentiment also appearing more than twice as often. In a survey conducted for qualitative evaluation of generative performance, responses indicated that the fine-tuned model's generated outputs were more relevant to the given topics on average 77.5% of the time. This demonstrates that the positive review generation language model for sponsored content in this paper can enhance the efficiency of time management for content creation and ensure consistent marketing effects. However, to reduce the generation of content that deviates from the category of positive reviews due to elements of the pre-trained model, we plan to proceed with fine-tuning using the augmentation of training data.

Building robust Korean speech recognition model by fine-tuning large pretrained model (대형 사전훈련 모델의 파인튜닝을 통한 강건한 한국어 음성인식 모델 구축)

  • Changhan Oh;Cheongbin Kim;Kiyoung Park
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.75-82
    • /
    • 2023
  • Automatic speech recognition (ASR) has been revolutionized with deep learning-based approaches, among which self-supervised learning methods have proven to be particularly effective. In this study, we aim to enhance the performance of OpenAI's Whisper model, a multilingual ASR system on the Korean language. Whisper was pretrained on a large corpus (around 680,000 hours) of web speech data and has demonstrated strong recognition performance for major languages. However, it faces challenges in recognizing languages such as Korean, which is not major language while training. We address this issue by fine-tuning the Whisper model with an additional dataset comprising about 1,000 hours of Korean speech. We also compare its performance against a Transformer model that was trained from scratch using the same dataset. Our results indicate that fine-tuning the Whisper model significantly improved its Korean speech recognition capabilities in terms of character error rate (CER). Specifically, the performance improved with increasing model size. However, the Whisper model's performance on English deteriorated post fine-tuning, emphasizing the need for further research to develop robust multilingual models. Our study demonstrates the potential of utilizing a fine-tuned Whisper model for Korean ASR applications. Future work will focus on multilingual recognition and optimization for real-time inference.

Prompt Tuning for Enhancing Security of Code in Code Generation Language Models (코드 생성 언어 모델의 코드 보안성 향상을 위한 프롬프트 튜닝)

  • Miseon Yu;Woorim Han;Yungi Cho;Yunheung Peak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.623-626
    • /
    • 2024
  • 최근 거대 언어 모델의 발전으로 프로그램 합성 분야에서 활용되고 있는 코드 생성 언어 모델의 보안적 측면에 대한 중요성이 부각되고 있다. 그러나, 이를 위해 모델 전체를 재학습하기에는 많은 자원과 시간이 소모된다. 따라서, 본 연구에서는 효율적인 미세조정 방식 중 하나인 프롬프트 튜닝으로 코드 생성 언어 모델이 안전한 코드를 생성할 확률을 높이는 방법을 탐구한다. 또한 이에 따른 기능적 정확성 간의 상충 관계를 분석한다. 실험 결과를 통해 프롬프트 튜닝이 기존 방법에 비해 추가 파라미터를 크게 줄이면서도 보안률을 향상시킬 수 있음을 알 수 있었다. 미래 연구 방향으로는 새로운 조정 손실함수와 하이퍼파라미터 값을 조정하여 성능을 더욱 향상시킬 수 있는지 조사할 것이다. 이러한 연구는 보다 안전하고 신뢰할 수 있는 코드 생성을 위한 중요한 발전을 이끌 수 있을 것으로 기대된다.

Performance Analysis K-Level Indexing Data Broadcast Schemes for Resilient Mobile Computing (이동 컴퓨팅을 위한 K-Level Indexing Broadcast 기법의 성능분석)

  • 정의종;김재훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.505-507
    • /
    • 2000
  • 이동 컴퓨팅에서 사용되는 단말기는 배터리의 제약과 이동통신망의 높은 장애율로 사용에 불편을 느낀다. 여러 mobile client는 공통 관심이 있는 데이터를 서버로부터 받는 방법으로 broadcasting을 많이 쓰는데, 이때 indexing 기법을 이용해 클라이언트는 원하는 데이터를 filtering해서 수신함으로서 에너지의 효율적 사용을 기할 수 있다. index를 중복시킴으로써 원하는 데이터 접근(access) 시간을 줄이고 무선 통신망의 장애에 따른 성능저하를 줄일 수 있다. 본 논문에서는 K-level indexing 기법을 위한 장애율에 따른 최적의 중복회수를 구하고 데이터 수신시 데이터 시간과 튜닝(tuning)시간을 구한다.

  • PDF

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides (폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기)

  • Kim, Kyoungrae;Moon, Hyunseung;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.174-180
    • /
    • 2016
  • A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.51-59
    • /
    • 2019
  • Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.

Prefix-tuning for Korean Natural language processing (Prefix-tuning에 기반한 한국어 자연언어 처리)

  • Min, Jinwoo;Na, Seung-Hoon;Shin, Dongwook;Kim, Seon-Hoon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.622-624
    • /
    • 2021
  • 현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.

  • PDF

Implementation and Optimization of Distributed Deep learning based on Multi Layer Neural Network for Mobile Big Data at Apache Spark (아파치 스파크에서 모바일 빅 데이터에 대한 다계층 인공신경망 기반 분산 딥러닝 구현 및 최적화)

  • Myung, Rohyoung;Ahn, Beomjin;Yu, Heonchang
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.201-204
    • /
    • 2017
  • 빅 데이터의 시대가 도래하면서 이전보다 데이터로부터 유의미한 정보를 추출하는 것에 대한 연구가 활발하게 진행되고 있다. 딥러닝은 텍스트, 이미지, 동영상 등 다양한 데이터에 대한 학습을 가능하게 할 뿐만 아니라 높은 학습 정확도를 보임으로써 차세대 머선러닝 기술로 각광 받고 있다. 그러나 딥러닝은 일반적으로 학습해야하는 데이터가 많을 뿐만 아니라 학습에 요구되는 시간이 매우 길다. 또한 데이터의 전처리 수준과 학습 모델 튜닝에 의해 학습정확도가 크게 영향을 받기 때문에 활용이 어렵다. 딥러닝에서 학습에 요구되는 데이터의 양과 연산량이 많아지면서 분산 처리 프레임워크 기반 분산 학습을 통해 학습 정확도는 유지하면서 학습시간을 단축시키는 사례가 많아지고 있다. 본 연구에서는 범용 분산 처리 프레임워크인 아파치 스파크에서 데이터 병렬화 기반 분산 학습 모델을 활용하여 모바일 빅 데이터 분석을 위한 딥러닝을 구현한다. 딥러닝을 구현할 때 분산학습을 통해 학습 속도를 높이면서도 학습 정확도를 높이기 위한 모델 튜닝 방법을 연구한다. 또한 스파크의 분산 병렬처리 효율을 최대한 끌어올리기 위해 파티션 병렬 최적화 기법을 적용하여 딥러닝의 학습속도를 향상시킨다.

  • PDF

Orthogonally multiplexed wavelet packet modulation and demodulation techniques (직교 다중화 Wavelet packet 변복조 기법)

  • 박대철;박태성
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • This paper introduces orthogonally multiplexed modulation and demodulation methods based on Wavelet Packet Bases and particularly describes Wavelet Packet Modulation (WPM) techniques that provide the designer of transmission signal set in time-frequency domain with tree structural information which can be adapted to given channel characterristics. Multi-dimensional signaling methods are also contrasted to common and different characteristics of conventional QAM. multi-tone modulation methods. The paper addresses the mothod how to find a best tree structure that has more adaptivity to impulse and narrowband tone pulse noises using a tunning algorithm which arbitrarily partitions the time-frequency space and makes a suitable orthogonal signaling waveforms. Simulation results exhibits a favorable performance over existing mod/demod methods specially for narrowband tone pulse and impulse interferences.

  • PDF