• 제목/요약/키워드: 튜닝효과

검색결과 68건 처리시간 0.054초

지식 기반 추론 엔진을 이용한 자동화된 데이터베이스 튜닝 시스템 (Automated-Database Tuning System With Knowledge-based Reasoning Engine)

  • 강승석;이동주;정옥란;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (A)
    • /
    • pp.17-18
    • /
    • 2007
  • 데이터베이스 튜닝은 일반적으로 데이터베이스 어플리케이션을 "좀 더 빠르게" 실행하게 하는 일련의 활동을 뜻한다[1]. 데이터베이스 관리자가 튜닝에 필요한 주먹구구식 룰(Rule of thumb)들을 모두 파악 하고 상황에 맞추어 적용하는 것은 비싼 비용과 오랜 시간을 요구한다. 그렇게 때문에 서로 다른 어플 리케이션들이 맞물려 있는 복잡한 서비스는 필수적으로 자동화된 데이터베이스 성능 관리와 튜닝을 필 요로 한다. 본 논문에서는 이를 해결하기 위하여 지식 도매인(Knowledge Domain)을 기초로 한 자동화 된 데이터베이스 튜닝 원칙(Tuning Principle)을 제시하는 시스템을 제안한다. 각각의 데이터베이스 튜닝 이론들은 지식 도매인의 지식으로 활용되며, 성능에 영향을 미치는 요소들을 개체(Object)와 콘셉트 (Concept)로 구성하고 추론 시스템을 통해 튜닝 원칙을 추론하여 쉽고 빠르게 현재 상황에 맞는 튜닝 방법론을 적용시킬 수 있다. 자동화된 데이터베이스 튜닝에 대해 여러 분야에 걸쳐 학문적인 연구가 이루어지고 있다. 그 예로써 Microsoft의 AutoAdmin Project[2], Oracle의 SQL 튜닝 아키텍처[3], COLT[4], DBA Companion[5], SQUASH[6] 등을 들 수 있다. 이러한 최적화 기법들을 각각의 기능적인 방법론에 따라 다시 분류하면 크게 Design Tuning, Logical Structure Tuning, Sentence Tuning, SQL Tuning, Server Tuning, System/Network Tuning으로 나누어 볼 수 있다. 이 중 SQL Tuning 등은 수치적으로 결정되어 이미 존재하는 정보를 이용하기 때문에 구조화된 모델로 표현하기 쉽고 사용자의 다양한 요구에 의해 변화하는 조건들을 수용하기 쉽기 때문에 이에 중점을 두고 성능 문제를 해결하는 데 초점을 맞추었다. 데이터베이스 시스템의 일련의 처리 과정에 따라 DBMS를 구성하는 개체들과 속성, 그리고 연관 관계들이 모델링된다. 데이터베이스 시스템은 Application / Query / DBMS Level의 3개 레벨에 따라 구조화되며, 본 논문에서는 개체, 속성, 연관 관계 및 데이터베이스 튜닝에 사용되는 Rule of thumb들을 분석하여 튜닝 원칙을 포함한 지식의 형태로 변환하였다. 튜닝 원칙은 데이터베이스 시스템에서 발생하는 문제를 해결할 수 있게 하는 일종의 황금률로써 지식 도매인의 바탕이 되는 사실(Fact)과 룰(Rule) 로써 표현된다. Fact는 모델링된 시스템을 지식 도매인의 하나의 지식 개체로 표현하는 방식이고, Rule 은 Fact에 기반을 두어 튜닝 원칙을 지식의 형태로 표현한 것이다. Rule은 다시 시스템 모델링을 통해 사전에 정의되는 Rule와 튜닝 원칙을 추론하기 위해 사용되는 Rule의 두 가지 타업으로 나뉘며, 대부분의 Rule은 입력되는 값에 따라 다른 솔루션을 취하게 하는 분기의 역할을 수행한다. 사용자는 제한적으로 자동 생성된 Fact와 Rule을 통해 튜닝 원칙을 추론하여 데이터베이스 시스템에 적용할 수 있으며, 요구나 필요에 따라 GUI를 통해 상황에 맞는 Fact와 Rule을 수동으로 추가할 수도 었다. 지식 도매인에서 튜닝 원칙을 추론하기 위해 JAVA 기반의 추론 엔진인 JESS가 사용된다. JESS는 스크립트 언어를 사용하는 전문가 시스템[7]으로 선언적 룰(Declarative Rule)을 이용하여 지식을 표현 하고 추론을 수행하는 추론 엔진의 한 종류이다. JESS의 지식 표현 방식은 튜닝 원칙을 쉽게 표현하고 수용할 수 있는 구조를 가지고 있으며 작은 크기와 빠른 추론 성능을 가지기 때문에 실시간으로 처리 되는 어플리케이션 튜닝에 적합하다. 지식 기반 모률의 가장 큰 역할은 주어진 데이터베이스 시스템의 모델을 통하여 필요한 새로운 지식을 생성하고 저장하는 것이다. 이를 위하여 Fact와 Rule은 지식 표현 의 기본 단위인 트리플(Triple)의 형태로 표현된다, 트리플은 Subject, Property, Object의 3가지 요소로 구성되며, 대부분의 Fact와 Rule들은 트리플의 기본 형태 또는 트리플의 조합으로 이루어진 C Condition과 Action의 두 부분의 결합으로 구성된다. 이와 같이 데이터베이스 시스템 모델의 개체들과 속성, 그리고 연관 관계들을 표현함으로써 지식들이 추론 엔진의 Fact와 Rule로 기능할 수 있다. 본 시스템에서는 이를 구현 및 실험하기 위하여 웹 기반 서버-클라이언트 시스템을 가정하였다. 서버는 Process Controller, Parser, Rule Database, JESS Reasoning Engine으로 구성 되 어 있으며, 클라이 언트는 Rule Manager Interface와 Result Viewer로 구성되어 었다. 실험을 통해 얻어지는 튜닝 원칙 적용 전후의 실행 시간 측정 등 데이터베이스 시스템 성능 척도를 비교함으로써 시스템의 효용을 판단하였으며, 실험 결과 적용 전에 비하여 튜닝 원칙을 적용한 경우 최대 1초 미만의 전처리에 따른 부하 시간 추가와 최소 약 1.5배에서 최대 약 3배까지의 처리 시간 개선을 확인하였다. 본 논문에서 제안하는 시스템은 튜닝 원칙을 자동으로 생성하고 지식 형태로 변형시킴으로써 새로운 튜닝 원칙을 파생하여 제공하고, 성능에 영향을 미치는 요소와 함께 직접 Fact과 Rule을 추가함으로써 커스터마이정된 튜닝을 수행할 수 있게 하는 장점을 가진다. 추후 쿼리 자체의 튜닝 및 인텍스 최적화 등의 프로세스 자동화와 Rule을 효율적으로 정의하고 추가하는 방법 그리고 시스템 모델링을 효과적으로 구성하는 방법에 대한 연구를 통해 본 연구를 더욱 개선시킬 수 있을 것이다.

  • PDF

명령어 튜닝이 대규모 언어 모델의 문장 생성에미치는 영향력 분석 (A Study on Instruction Tuning for Large-scale Language Models)

  • 나요한;채동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.684-686
    • /
    • 2023
  • 최근 대규모 언어모델 (large language models) 을 활용하여 다양한 자연어처리 문제를 추가학습 없이 풀어내기 위한 zero-shot 학습에 대한 연구가 활발히 수행되고 있다. 특히 프롬프트 튜닝(prompt tuning)을 활용하여 적은 학습만으로도 효과적으로 다양한 태스크에 적응하도록 돕는 방법이 최근 대규모 언어모델의 성능을 향상시키고 있다. 본 논문은 명령어 튜닝 (instruction tuning) 이 언어모델에 끼치는 영향을 분석하였다. 명령어 튜닝된 모델이 기존 언어모델과 비교하여 변화된 문장 생성 특징, 생성된 문장의 품질 등에 대한 분석을 수행하고 결과를 제시한다.

XPath Accelerator: 구현 및 튜닝 (XPath Accelerator: An Implementation and its Tuning)

  • 신진호;이상원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.47-50
    • /
    • 2004
  • XML 은 데이터 저장과 전송을 위한 수단으로 자리잡아 가고 있으며, 관계형 DBMS를 이용해서 효과적으로 대용량의 XML 데이터의 저장과 검색에 관한 연구가 진행 되고 있다. 본 논문에서는 기 제안된 XPath Accelerator 라는 XML 데이터 인덱스 메커니즘을 상용 관계형 DBMS를 활용해서 구현하고, 이를 해당 DBMS 상에서 최대한의 성능을 위해 튜닝하는 방안을 기술한다. 이를 위해 XBench 라는 XML 전용 벤치마크 데이터를 활용해서 XPath Accelerator 의 문제점과 향후 개선 방안에 대해서도 논의한다.

  • PDF

자동발전제어(AGC) 최적튜닝에 관한 연구 (Optimal AGC Control Parameter Tuning)

  • 오창수;송석하;이운희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.321-322
    • /
    • 2008
  • 주파수는 발전기 조속기와 전적거래소 EMS AGC의 협조제어 체계가 적절하여야 안정적인 운영이 가능하며, 과다한 주파수 조정은 경제급전을 저해함은 물론 발전기의 수명단축을 초래하기 때문에 AGC 최적튜닝은 필수적이다. 본 논문에서는 '07년도에 거래소 계통운영처에서 수행한 AGC 제어파라미터 튜닝기법 및 효과에 대해 논하고 있으며, 학계는 물론 동종업계에 AGC 관련 기술개발시 업무추진에 도움이 되었으면 한다.

  • PDF

한국어 언어모델 파인튜닝을 통한 협찬 블로그 텍스트 생성 (Generating Sponsored Blog Texts through Fine-Tuning of Korean LLMs)

  • 김보경;변재연;차경애
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.1-12
    • /
    • 2024
  • 본 논문에서는 대규모 한국어 언어모델인 KoAlpaca를 파인튜닝하고 이를 이용한 블로그 텍스트 생성 시스템을 구현하였다. 소셜 미디어 플랫폼의 블로그는 기업 마케팅 수단으로 널리 활용된다. 수집된 협찬 블로그 텍스트의 감정 분석과 정제를 통한 긍정 리뷰의 학습 데이터를 구축하고 KoAlpaca 학습의 경량화를 위한 QLoRA를 적용하였다. QLoRA는 학습에 필요한 메모리 사용량을 크게 줄이는 파인튜닝 접근법으로 파라미터 크기 12.8B 경우의 실험 환경에서 LoRA 대비 최대 약 58.8%의 메모리 사용량 감소를 확인하였다. 파인튜닝 모델의 생성 성능 평가를 위해서 학습 데이터에 포함되지 않은 100개의 입력으로 생성한 텍스트는 사전학습 모델에 비해서 평균적으로 두배 이상의 단어 수를 생성하였으며 긍정 감정의 텍스트 역시 두 배 이상으로 나타났다. 정성적 생성 성능 평가를 위한 설문조사에서 파인튜닝 모델의 생성 결과가 제시된 주제에 더 잘 부합한다는 응답이 평균 77.5%로 나타났다. 이를 통해서 본 논문의 협찬물에 대한 긍정 리뷰 생성 언어모델은 콘텐츠 제작을 위한 시간 관리의 효율성을 높이고 일관된 마케팅 효과를 보장하는 콘텐츠 제작이 가능함을 보였다. 향후 사전학습 모델의 생성 요소에 의해서 긍정 리뷰의 범주에서 벗어나는 생성 결과를 감소시키기 위해서 학습 데이터의 증강을 활용한 파인튜닝을 진행할 예정이다.

무선 XML 스트림을 위한 색인 기법 (An Index Method for Wireless XML Streams)

  • 정연돈;이지연
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권4호
    • /
    • pp.416-428
    • /
    • 2005
  • 본 논문은 무선 정보 시스템 환경에서, 서버가 다수의 클라이언트들에게 무선 방송 기법을 통해 XML 데이타를 스트리밍 서비스할 때 필요한 색인 기법을 제안한다. 제안 하는 색인 방법은 XML 데이타의 스트리밍시 클라이언트들의 접근 시간 및 튜닝 시간을 효과적으로 제어하기 위하여, XML 데이터 및 색인 정보를 부분적으로 반복, 배치하여 스트림을 구성한다. 이를 위하여 트리형태로 표현되는 XML 데이타와 색인 정보를 2-레벨로 구분하여, 색인 및 데이타의 중복 배치 영역을 설정한다. 제안하는 색인 기법의 성능을 접근 시간 및 튜닝 시간 측면에서 분석하여, 분석의 결과로 최적의 레벨 깊이를 결정한다.

폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기 (Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides)

  • 김경래;문현승;정영철
    • 한국광학회지
    • /
    • 제27권5호
    • /
    • pp.174-180
    • /
    • 2016
  • 튜닝 가능한 광 신호 지연기를 설계, 제작 및 특성 측정을 하였다. 광 신호 지연기는 네 개의 폴리머 링 공진기 add/drop 필터들과 그 사이에 배치된 지연 도파로들로 구성되었다. 폴리머 도파로는 한변의 길이가 $1.8{\mu}m$ 인 정사각형 매립 구조이고, 코어와 클래딩의 굴절율은 각각 1.48과 1.37이다. 이와 같은 도파 구조로 인하여 매우 작은 반경의 곡선도파로를 활용함으로써, 콤팩트한 소자를 실현할 수 있다. 각각의 add/drop 필터의 링 공진기 상에 전극을 형성하여 열 광학 효과에 의한 튜닝이 가능하도록 하였다. 측정 결과, 각각의 add/drop 필터를 튜닝함으로써 지연 도파로의 수에 비례하는 지연 시간인 110 ps, 225 ps, and 330 ps를 확인할 수 있다.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.51-59
    • /
    • 2019
  • 웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

정보시스템 성능 향상을 위한 SQL 튜닝 기법 (SQL Tuning Techniques to Improve the Performance of Integrated Information Systems)

  • 김양진;주복규
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.27-33
    • /
    • 2010
  • 통합 정보시스템의 도입과 구축에 있어 가장 중요한 성공요소중의 하나가 성능 최적화이다. 본 연구에서는 정보시스템의 성능향상을 위해 비용도 저렴하고 단시간에 효과를 나타낼 수 있는 관계형 데이터베이스의 SQL 튜닝 기법을 제안하고, 이를 중소규모의 회사에 실제 운용되고 있는 데이터베이스 시스템에 적용하여 그 효율성을 분석하였다.

구름(KULLM): 한국어 지시어에 특화된 거대 언어 모델 (KULLM: Learning to Construct Korean Instruction-following Large Language Models)

  • 이승준;이태민;이정우;장윤나;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.196-202
    • /
    • 2023
  • Large Language Models (LLM)의 출현은 자연어 처리 분야의 연구 패러다임을 전환시켰다. LLM의 핵심적인 성능향상은 지시어 튜닝(instruction-tuning) 기법의 결과로 알려져 있다. 그러나, 현재 대부분의 연구가 영어 중심으로 진행되고 있어, 다양한 언어에 대한 접근이 필요하다. 본 연구는 한국어 지시어(instruction-following) 모델의 개발 및 최적화 방법을 제시한다. 본 연구에서는 한국어 지시어 데이터셋을 활용하여 LLM 모델을 튜닝하며, 다양한 데이터셋 조합의 효과에 대한 성능 분석을 수행한다. 최종 결과로 개발된 한국어 지시어 모델을 오픈소스로 제공하여 한국어 LLM 연구의 발전에 기여하고자 한다.

  • PDF