박막 태양전지의 단락전류를 증가시키기 위해서는 투명전도 산화막의 표면 식각을 통한 광포획 특성 극대화가 중요하며, 일반적으로 스퍼터링법으로 제작된 투명전도 산화막의 표면 식각은 HCl solution을 이용한다. 본 연구는 투면전도 산화막 증착시 seed로 작용할 수 있는 colloidal 형태의 nanoparticle을 유리기판에 형성한 뒤 rf-magnetron sputtering 법을 이용하여 ZnO:Al(AZO) 투명전도 산화막을 증착하여 광학 전기적 특성 변화를 분석하였다. Nanoparticle을 사용하여 제조된 AZO 박막은 nanoparticle의 확산에 의한 전자농도의 향상이 보였으나, 이동도의 감소로 인해 전기적 특성에 큰 변화는 없었다. 반면 AZO 박막의 표면형상이 nanoparticle로 인해 변하여 박막의 광 포획을 위한 안개도가 향상됨을 확인 할 수 있었으며, 이로 인해 표면 형상 제어를 통한 박막 태양전지 적용을 위한 투명전도 산화막을 제작할 수 있었다.
투명히터는 자동차유리 및 헤드램프의 성에 제거, 건축의 단열 및 난방, 의료용, 군사용 등 다양하게 사용되어지고 있으며, 더 나아가 플렉서블하고 웨어러블한 투명히터가 연구되고 있다. 투명히터에 사용되고 있는 대표적 투명전극인 Indium Tin Oxide (ITO)는 높은 투과도와 낮은 면저항을 가지지만 유연성이 좋지 않아 유연한 투명히터에 적용하기에는 어려움이 있다. 이를 해결하기 위해서 ITO를 대체할 수 있는 CNT, Graphene, AgNW, 전도성 고분자 등의 투명전극에 관한 연구가 활발히 진행되고 있다. 그러나 CNT, Grapene, 전도성 고분자는 여전히 전기적 특성이 좋지 못하기 때문에 차세대 투명전극으로 사용되기는 어려움이 있다. 반면에 AgNW는 용액공정으로 제조 단가가 비교적 저렴하며, 높은 전기전도 특성을 가지는 투명전극이다. AgNW는 나노와이어가 네트워크를 형성하고 있어 높은 전도성과 광 투과도를 가지지만 $200^{\circ}C$ 이상의 온도에서 손상된다. 이를 해결하기 위해 AgNW전극에 금속 산화막을 형성하여 내열성을 향상시키고자 하였다. 그러나 기존의 Reactive Sputter 방식으로 금속 산화막을 형성하게 되면 산소 분위기에서 AgNW가 산화되기 때문에 본 연구에서는 AgNW위에 금속 박막을 증착하고 Ion Beam 처리를 통해서 금속 산화막을 형성하여 AgNW 전극과 유사한 투과도와 저항을 가지면서 $300^{\circ}C$ 까지 열적 안정성을 확보하여 내열성을 향상시켰다. 유연한 PES기판 위에 스핀 코팅 방법으로 AgNW를 코팅하였고, Magnetron Sputter로 금속 박막을 형성한 후 Ion Beam 처리를 통해 금속 산화막을 형성하였다. 이를 적용하여 투명히터를 제작한 결과 유연 기판상 투명히터로 활용이 가능함을 확인하였다.
디스플레이는 유리 기판이나 폴리머 기판에 진공장비를 통한 투명전극(TCO)를 증착시키고, 그 위에 발광체와 유전체를 쌓는 방식으로 공정을 진행한다. 특히 투명전극(TCO)의 경우 진공장비를 이용하여 증착을 진행하는데, 이러한 생산 공정은 고가의 생산 장비 및 재료와 공정의 복잡화에 따른 생산단가 상승등으로 인한 경쟁력 저하 문제가 야기되고 있다. 본 연구에서는 투명전극(TCO)의 주재료인 인듐 주석 산화물(ITO)를 배제하고, 아연 산화물(ZnO)에 알루미늄을 도핑한 투명전극을 습식방식으로 형성하는 기술에 관한 것이다. Sol-gel법을 이용한 용액 제조와 ZnO에 Al을 도핑하여, 후 열처리하여 유리 기판에 $1{\mu}m$두께를 갖는 투명전극 기판을 제작하였다. 각 공정에 있어서 조성변화가 투명전극 층에 미치는 영향에 대해서 조사 하였다. 이와 같은 제조 공정에는 Sol-gel 용액 제조, 박막형성에 이은 후처리로 이루어지는 단순공정이 적용되어, 기존 투명전도 산화막 공정에 대비하여 단순 공정으로 이뤄지며, 진공 설비를 배제함으로써 기존공정 대비 경쟁력을 갖게 된다.
유연성 투명 전도막은 현대 전자산업의 발전에 있어 필수적인 부품소재로서, 가시광선의 투과율이 80% 이상이고 면저항이 $100{\Omega}/sq.$ 전후이며 휘거나 접히고 나아가 두루마리의 형태로도 응용이 가능한 소재를 일컫는다. 이러한 유연성 투명 전도막은 차세대 정보디스플레이 산업 및 유비쿼터스 사회의 중심이 되는 유연성 디스플레이, 터치패널, 발광다이오드, 태양전지 등 매우 다양한 분야에 응용이 기대된다. 이러한 이유로 고 신뢰성 유연성 투명 전도막 개발기술은 차세대 산업에 있어서의 핵심기술로 인식되고 있다. 현재로서는 인듐 주석 산화물(indium tin oxide; ITO) 및 전도성 유기고분자를 사용하여 투명 전도막을 제조하고 있으나, ITO 박막의 경우 인듐 자원의 고갈로 인한 가격상승 및 기판과의 낮은 접착력, 열팽창계수의 차이로 인한 공정상의 문제, 산화물 특유의 취성으로 인한 유연소자로서의 내구성 저하 등의 문제가 제기되고 있다. 전도성 유기고분자의 경우는 낮은 전기전도도와 기계적강도, 유기용매 처리 등의 문제점이 지적되고 있다. 따라서 높은 전기전도도와 투광도 뿐만 아니라 유연성을 지니는 재료의 개발이 요구되고 있는 실정이다. 최근 이러한 재료로서 그래핀(graphene)과 탄소나노튜브(carbon nanotube; CNT)를 중심으로 하는 탄소나노재료가 주목받고 있으며 많은 연구가 활발히 진행되고 있다. 본 연구에서는 열화학기상증착법(thermal vapor deposition; TCVD)으로 합성된 그래핀 및 CNT를 이용하여 탄소나노재료 복합체 기반의 유연성 투명 전도막을 제작하고 그 특성을 평가하였다. 그래핀과 CNT합성을 위한 기판으로는 각각 300 nm 두께의 니켈과 1 nm 철이 증착된 실리콘 웨이퍼를 이용하였으며, 원료가스로는 메탄(CH4)과 아세틸렌(C2H2)등의 탄화수소가스를 이용하였다. 그래핀의 경우 원료가스의 유량, 합성온도, 냉각속도를 변경하여 대면적으로 두께균일도가 높은 그래핀을 합성하였으며, CNT의 경우 합성시간을 변수로 길이 제어합성을 도모하였다. 합성된 그래핀은 식각공정을, CNT는 스프레이 증착공정을 통해 고분자 기판(polyethylene terephthalate; PET) 위에 순차적으로 전사 및 증착하여 탄소나노재료 복합체 기반의 유연성 투명 전도막을 제작하였다. 제작된 탄소나노재료 복합체 기반의 유연성 투명 전도막은 물리적 과부하를 받았을 때 발생할 수 있는 유연성 투명 전도막의 구조적결함에 기인하는 전도성 저하를 보상하는 특징이 있어, 그래핀과 탄소나노튜브 각각으로 제조된 유연성 투명 전도막보다 물리적인 하중이 반복적으로 인가되었을 때 내구성이 향상되는 효과가 있다. 40% 스트레인을 반복적으로 인가하였을 때 그래핀 투명 전도막은 20 사이클 이후에 면저항이 $1-2{\Omega}/sq.$에서 $15{\Omega}/sq.$ 이상으로 급증한 반면 그래핀-CNT 복합체 투명 전도막은 30사이클까지 $1-2{\Omega}/sq.$ 정도의 면저항을 유지하였다.
투명 전도막은 높은 광 투과도와 전기 전도도를 동시에 가지는 물질로서 TFT-LCD, 태양 전지 등 다양한 산업에 응용되고 있다(1). 투명 전도막 중에서 가장 많이 사용되는 물질은 In$_2$O$_3$에 Sn을 첨가한 인듐 주석 산화물(ITO)이나 투명 전도막 응용 산업의 발전에 따라 더 높은 광 투과도와 전기 전도도, 우수한 에칭 특성 및 매끄러운 표면 상태를 동시에 가지면서 저온 제작이 가능하여 ITO의 성질을 능가하는 우수한 신규 투명 전도막 개발이 요구되고 있다. (중략)
탄소나노튜브(CNT)를 이용한 전도성 투명 박막은 기존의 산화인듐주석(ITO)보다 가공 공정이 매우 간단하고 제조비용이 저렴하여 다양한 제품에 적용시킬 수 있고, 다양한 기판에 형성시킬 수 있어 새로운 유형의 제품을 만들 수 있는 가능성이 있다. 본 연구에서는 CNT를 이용하여 만든 투명 박막의 전도특성을 높이기 위하여 기존의 CNT 박막에 금속 이온간의 산화-환원 반응을 이용하여 Tin(II) chloride와 silver nitrate로 Ag seed를 형성시켜 투명 전도막 효율 변화를 측정하였다.
기존 산화물 투명전극에 비해 더욱 우수한 전기전도성을 가지는 다층구조의 투명전도막을 마그네트론 스퍼터링 장치를 이용해 제작하였다. 전기전도성을 극대화하기 위해 비저항이 가장 낮은 Ag 금속을 사용하고, 금속층의 상하부에 반사광을 재반사시키는 산화물층을 형성시킨 다층막구조를 이용하였다. Ag 금속막은 충분한 투과율과 전기전도성을 확보하기 위해 연속된 막을 이루기 시작하는 두께인 140$\AA$로 증착하였고, ITO 박막은 가시광 영역의 반사광을 재반사시키는 최적의 두께인 600$\AA$ 내외로 증차하였다. Ag 박막의 증착조건과 후속 ITO 박막증착공정은 Ag박막의 특성에 영향을 미치므로 다층막의 전기적, 광학적 특성은 이들 증착 조건에 민감한 영향을 받음을 확인하였다. 상온에서 Ag박막을 형성하고 ITO박막은 7mTorr의 낮은 압력에서 증착하여 제작한 투명전도막은 SVGA 급의 STN-LCD용 투명전극으로 사용 가능한 4Ω/ㅁ 이하의 낮은 면저항과 빛의 파장이 550nm일 때 85%이상의 투과도를 나타내었다.
일반적으로 실리콘 이종접합 태양전지의 전면 투명산화막전도막에 요구되는 특성은 높은 투과도와 높은 전도도 특성이 요구되고 있다. 하지만 높은 전도도를 위해 carrier concentration을 높이게 되면 장파장 영역에서의 free-carrier absorption이 발생하여 투과도가 좋지 않게 되는 trade-off 관계에 있다. 그리고 일반적으로 투명산화전도막 두께 증가에 따라 전도도 상승은 투과도 하락을 가져와 태양전지의 효율 저감을 가져올 것이라고 생각되었다. 본 연구에서는 이러한 전면 투명산화전도막의 최적화에 관한 연구로써 박막 특성에 관한 분석과 태양전지 특성의 상관관계에 대하여 분석하였다. 특히 낮은 전도도를 가지는 실리콘 이종접합 태양전지의 emitter로 인해 투명산화전도막의 면저항성분에 관한 특성이 태양전지 특성에 가장 주도적인 영향을 미치는 것으로 나타났으며, 이는 직렬저항 성분에 대한 충진률 변화로 분석할 수 있었다.
투명전도 산화막(Transparent conducing oxide: TCO)은 태양 전지, 터치패널, 가스 센서 등 여러 분야에 적용할 수 있는 물질로서 전기 전도성과 광 투과성을 동시에 가진다. 높은 전기 전도성과 광 투과성을 가지는 Sb:$In_2O_3$(ITO)는 투명전도 산화막 재료로써 가장 일반적으로 사용되고 있으나 인듐의 매장량 한계로 인해 가격이 높다는 단점이 있다. 본 연구에서는 ITO 대체 TCO 물질인 Al doped ZnO(AZO)를 rf magnetron sputter를 이용하여 최적의 수소 도핑량을 찾아 ITO의 전기적 광학적 성질과 비교하였다. AZO 박막은(ZnO:Al2O3 2wt.%)타겟을 이용하여 heater 온도 250도에서 슬라이드 글래스 및 코닝 글래스에 증착시켰고 비교군인 ITO박막은 (In2O3:$SnO_2$ 10wt.%)타겟을 이용하여 수소 도핑 없이 350도로 증착시켰다. AZO 및 ITO 박막의 전기적 특성은 hall measurement를 이용하여 측정하였고, UV-VIS spectrophotometer로 광학적 특성을 측정하였다. 수소 도핑량이 증가함에 따라 AZO 박막의 캐리어 농도가 증가하여 전기적 특성이 향상되었고, 가시광 영역에서 높은 평균 투과도를 유지 하였다. AZO 박막과 ITO 박막의 전기적 및 광학적 특성을 비교한 결과, 최적 수소 도핑량을 가진 AZO 박막은 ITO 박막에 준하는 특성을 보였다.
투명전극 산화막은 태양전지, 평판 디스플레이 등의 투명전극과 같은 광전자 소자에 사용되고 있다. 투명 전도성 산화막으로서 ITO (Indium tin oxide)는 높은 투과도, 낮은 비저항, 높은 일함수 등의 장점을 가지고 있어서 그동안 널리 사용되어 왔다. 그러나 In의 희소성으로 인한 고가격 문제 때문에 이를 대체하기 위해 불순물을 도핑한 ZnO (Zinc oxide)에 관한 연구가 활발히 진행되어 왔다. ZnO의 전기전도도를 높이기 위해 일반적으로 Al, Ga, B와 같은 3족 원소가 ZnO의 n형 도펀트로 널리 사용된다. 그 중에서 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면 낮은 생산단가, 우수한 전기적 및 광학적 특성을 보이기 때문에 투명 전극으로서 Al-doped ZnO (AZO)가 많이 이용되고 있다. 본 연구에서는 rf 마그네트론 스퍼터링 공정을 이용하여 glass 기판 위에 Al-doped ZnO (AZO) 투명 전도막을 증착하였고, 수명 및 신뢰성에 영향에 미치는 주요 인자로서 온도, 온도 사이클 및 습도에 따른 AZO 박막의 열화 특성에 대한 연구를 진행하였다. 또한, 온도 사이클, 고온 및 고온고습 환경에 장시간 노출된 AZO 박막들의 성능 저하 원인들을 미세구조 관찰, 전기적 및 광학적 특성 변화들을 연계하여 규명하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.