• Title/Summary/Keyword: 투광형 결정계 태양전지

Search Result 2, Processing Time 0.015 seconds

Temperature and Power Generation Characteristics of c-Si G/G Spandrel Window depending on Opening Ratio of PV Module (스팬드럴용 투광형 결정계 PV창호의 셀 간격 개구율에 따른 온도 및 발전성능 해석연구)

  • Yoon, Jong-Ho;Kim, Dong-Su;Oh, Myung-Hwan;Lee, Jae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.51-58
    • /
    • 2012
  • This study aims to analyze characteristics of Cell surface temperature and generated power performance for improving PV(Photovoltaic) system condition according to the cell opening ratio of transparent crystal PV system at Spandrel of curtain-wall. For this purpose, alternatives were classified for eight different cases that opening ratio of transparent crystal PV system varied from 0% to 70%, which was used by simulation tool, EnergyPlus. As results, it turned out that increasing opening ratio of transparent crystal PV system led higher PV surface temperature, back-sheet type was thus the most advantageous for decreasing surface temperature, annual generating efficiency, and annual accumulated generating power. Consequently, blocking off air space from outside insolation can advantageously keep to be better condition for generated power performance.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.