• Title/Summary/Keyword: 투과스캔

Search Result 37, Processing Time 0.024 seconds

An Assessment of Post-Injection Transmission Measurement for Attenuation Correction With Rotating Pin Sources in Positron Emission Tomography (양전자방출단층촬영(PET)에서 회전 핀선원과 투과 및 방출 동시 영상 방법을 이용한 감쇠보정 방법 특성에 관한 고찰)

  • Lee, J.R.;Choi, Y.;Lee, K.H.;Kim, S.E.;Chi, D.Y.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.4
    • /
    • pp.533-540
    • /
    • 1995
  • Attenuation correction is important in producing quantitative positron emission tomography (PET) images. Conventionally, photon attenuation effects are corrected using transmission measurements performed before tracer administration. The pre-injection transmission measurement approach may require a time delay between transmission and emission scans for the tracer studies requiring a long uptake period, about 45 minutes for F-18 deoxyglucose study. The time delay will limit patient throughput and increase the likelihood of patient motion. A technique lot performing simultaneous transmission and emission scans (T+E method) after the tracer injection has been validated. The T+E method substracts the emission counts contaminating the transmission measurements to produce accurate attenuation correction coefficients. This method has been evaluated in experiments using a cylindrical phantom filled with background water (5750 cc) containing $0.4{\mu}Ci/cc$ of F-18 fluoride ion and one insert cylinder (276 cc) containing $4.3{\mu}Ci/cc$. GE $Advance^{TM}$ PET scanner and Ge-68 rotating pin sources for transmission scanning were used for this investigation. Post-injection transmission scan and emission scan were peformed alternatively over time. The error in emission images corrected using post-infection transmission scan to emission images corrected transmission scan was 2.6% at the concentration of $1.0{\mu}Ci/cc$. No obvious differences in image quality and noise were apparent between the two images. The attenuation correction can be accomplished with post-injection transmission measurement using rotating pin sources and this method can significantly shorten the time between transmission and omission scans and thereby reduce the likelihood of patient motion and increase scanning throughput in PET.

  • PDF

Impact of Contrast agent for Attenuation Correction Using CT Scan in PET/CT System (PET/CT 시스템에서 CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son, Hye-Kyung;Turkington, Timothy G;Kwon, Yun-Young;Bong, Jung-Kyun;Jung, Hai-Jo;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.100-103
    • /
    • 2004
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG imaging. Various transmission density maps was generated with non-uniform enhancement of contrast agent, hypo-attenuating of contrast agent for tumor, different concentration of contrast agent, and so on. Attenuation correction was done with all transmission maps. In the experiments, we confirmed that attenuation coefficient was changed by concentration of contrast agent. From the simulation data, image quality of attenuation corrected images was affected by contrast agent and artifact was produced by contrast agent. These results indicated that the contrast agent should be used with a full understanding of its potential problem in PET/CT system.

  • PDF

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Effective Dose Evaluation using Clinical PET/CT Acquisition Protocols (전신 PET/CT 영상 획득 프로토콜을 이용한 유효선량 평가)

  • Nam, So-Ra;Son, Hye-Kyung;Lee, Sang-Hoon;Lee, Chang-Lae;Cho, Hyo-Min;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation dose for clinical PET/CT protocols in clinical environments using Alderson phantom and TLDs. Radiation doses were evaluated for both Philips GEMINI 16 slice PET/CT system and GE DSTe 16 slice PET/CT system. Specific organ doses with $^{137}Cs$ transmission scan, high quality CT scan and topogram in philips GEMINI PET/CT system were measured. Specific organ doses with CT scan for attenuation map, CT scan for diagnosis and topogram in GE DSTe PET/CT system were also measured. The organs were selected based on ICRP60 recommendation. The TLDs used for measurements were selected for within an accuracy of ${\pm}5%$ and calibrated in 10 MV X-ray radiation field. The effective doses for $^{137}Cs$ transmission scan, high qualify scan, and topogram in Philips GEMINI PET/CT system were $0.14{\pm}0.950,\;29.49{\pm}1.508\;and\;0.72{\pm}0.032mSv$ respectively. The effective doses for CT scan to make attenuation map, CT scan to diagnose and topogram in GE DSTe PET/CT system were $20.06{\pm}1.003,\;24.83{\pm}0.805\;and\;0.27{\pm}0.008mSv$ respectively. We evaluated the total effective dose by adding effective dose for PET Image. The total PET/CT doses for Philips GEMINI PET/CT (Topogram+$^{137}Cs$ transmission scan+PET, Topogram+high qualify CT+PET) and GE DSTe PET/CT (Topogram +CT for attenuation map+ PET, Topogram+diagnostic CT+ PET) are $7.65{\pm}0.951,\;37.00{\pm}1.508,\;27.12{\pm}1.003\;and\;31.89{\pm}0.805mSv$ respectively. Further study may be needed to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with good image qualify.

  • PDF

Optimization of PET Scan Time Using Phantom Studies (팬텀 영상을 이용한 PET 스캔시간의 최적화 연구)

  • 정하규;김동현;정해조;손혜경;홍순일;윤미진;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.139-148
    • /
    • 2002
  • The measured attenuation correction with transmission (Tx) scans produced quantitatively accurate images. However, it was not clear for optimal emission (Ex) and Tx scan time in PET imaging. This study was to evaluate acceptable Ex and Tx scan time by simulating clinical situations using various phantoms. Cylindrical and NEMA phantom were used for $^{18}$ F-PET scan using 2D protocol in GE Advance PETTM scanner. Cylindrical phantom was filled with 136 MBq 18F, and five regions of interests (ROI) were drawn on 23 slices. NEMA phantom had three inserts containing water, air and polytetrafluoro-ethylene (PTFE). Outside of these inserts were filled with 309 MBq of $^{18}$ F, and total 12 ROIs were drawn on 23 slices. Scans were carried out according to five Ex scan times: 2, 5, 10, 15, and 30 min, and nine Tx scan times: 2, 3, 4, 5, 7, 10, 15, 20, and 30 min. Images were reconstructed using measured attenuation correction, and ROI analyses were performed for all images, and mean, standard deviation (SD), coefficient of variation and percent errors were calculated. For cylindrical phantom study, ROI mean and SD were decreased as Ex and Tx time increased. Coefficients of variation were kept constant, when Tx was greater than 10 min. The amount of error decreased for the increment of Ex time from 10 min to 15 min was almost the same to that from 15 min to 30 min. In NEMA phantom Tx 15 min showed the lowest er개r level when the percent errors for three inserts were summed for all of the Ex times. This study suggested that Ex 15 min and Tx 15 min were acceptable as optimal scan time for the scanning protocol and the dose of radiopharmaceuticals used in these phantom study.

  • PDF

Full mouth rehabilitation with dental implant utilizing 3D digital image and CAD/CAM system: case report (3차원 디지털 영상과 CAD/CAM 시스템을 활용한 전악 임플란트 수복 증례)

  • Kang, Se-Ha;Jeong, Seung-Mi;Shin, Jae-Ok;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • This article describes how to use digital system in a fully edentulous case that diagnosis to definitive prosthesis fabrication. While proceeding oral scan and CBCT taking, digital markers were attached on maxillary palate and lower existing denture. Using CBCT image and oral scan image, the bone contour and anatomical structures were analyzed and flapless surgical guide, customized abutment and prosthesis were made. After the osseointegration, the definitive prosthesis was fabricated using the oral scan image with scan body. It provides clinicians with a fast workflow and improves clinical efficiency.

Implant prosthesis for fully edentulous patients using intra-oral scanning and abutment merging technique: A case report (무치악 환자에서 구강 스캔과 지대주 중첩을 이용한 임플란트 보철수복 증례)

  • Hwang, Chan-Hyeon;Jeong, Seung-Mi;Kim, Yong-Jun;Kim, Kyeong-Hee;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.61-70
    • /
    • 2017
  • In this case, the impression surface of the existing denture was scanned and was inverted three-dimensionally to express the residual ridge form. Implant planning was performed on the superimposed data of the CT with the scanned image of the denture with radiopaque markers attached. At the day of surgery, customized abutments fabricated in accordance with the form of the gingival margin were linked with fixtures and temporary restorations were set. In the process of fabricating the final prosthesis after the osseointegration of implant fixture, the intraoral scan images at abutment level were merged with images of the abutments scanned and stored before implant surgery. By fabricating the final prosthesis with the abutments obtained by merging can increase the marginal fitness of the final prosthesis and simplify the clinical process.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.