• Title/Summary/Keyword: 퇴적 구조

Search Result 758, Processing Time 0.026 seconds

Depositional processes of Tidal Flat Deposits off Mankyung-Dongjin Rivers West Sea Korea. (만경강-동진강 하구역 조간대 퇴적층의 퇴적과정)

  • 최진용
    • The Korean Journal of Quaternary Research
    • /
    • v.9 no.1
    • /
    • pp.19-32
    • /
    • 1995
  • 한반도 서해 만경강-동진강 하구역 조간대 퇴적층의 수직층서 퇴적상 변화를 분석 하여 퇴적과정을 기초해양환경의 관점에서 해석하였다. 본 연구해역 저 조선의 퇴적층은 사 질함량이 우세한 반면 방조제와 인접한 만조선의 퇴적층은 실트질이 우세하였고 상층과 하 층의 퇴적물이 뚜렷하게 구분되었다. 사질퇴적층의 내부퇴적구조는 괴상구조, 평행층리 및 사층리 구조등이 우세하며 니질퇴적층에서는 모래/니질 교호엽리구조가 우세하다. 본 연구 의 결과 만경강-동진강 조간대 퇴적층서는 인근의 방조제 축조에 다른 퇴적환경 변화에 크 게 영향받은 것으로 해석된다, 즉 방조제축소 이전 고에너지의 퇴적환경에서 집적되었던 사 질퇴적층이 방조제축조 이후에는 저에너지 환경조건에서 집적된 니질퇴적물로 피복된 것으 로 해석된다.

A study on the sedimentation in the vicinity of the groins near harbor (항만 인근 해안의 인공 구조물 주변 퇴적 작용 분석)

  • Kim Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.179-183
    • /
    • 2006
  • As there are many human activities in the coastal regions, various facilities and coastal engineering structures for protecting beach have been built. Dredging work, reclamation and harbor construction have caused the topography of sea floor to change rapidly. So sedimentation in the vicinity of the groins has get dull and the serious aspects sometimes turn up. Analyzing the surface sediments with transport vector model is one of the good methods to understand the sedimentation in the vicinity of the groins. I analyzed the transport vector of the surface sediments in the vicinity of the groins at the region where serious beach erosion happens near Pohang harbor.

  • PDF

Geological Significance of Liquefaction and Soft-sediment Deformation Structures (액상화와 연질퇴적변형구조의 지질학적 의미)

  • Ghim, Yong Sik;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.471-484
    • /
    • 2019
  • Liquefaction occurs by a temporal loss of sediment strength as a consequence of increased pore water pressure during the re-arrangement of unconsolidated, granular sediments. Liquefaction is dependent on the physical properties of the sediments and cause surface cracks, landslide, and the formation of soft-sediment deformation structures(SSDS). SSDS is formed by the combined action of the driving force and deformation mechanism(liquefaction, thixotropy, and fluidization) that is triggered by endogenic or exogenic triggers. So research on the SSDS can unravel syndepositional geological events. If detailed sedimentologic analysis together with surrounding geological context suggest SSDS formed by earthquakes, the SSDS provide a clue to unravel syndepositional tectonic activities and detailed paleoseismological information(> Mw 5) including earthquakes that leave no surface expression.

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

History and Characteristics of Tidal Sand Ridges in Kyeonggi Bay, Korea (경기만에 발단한 조류성사퇴의 역사 및 특성)

  • 방효기;이호영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.278-286
    • /
    • 1994
  • Tidal sand ridges, which develop in Kyeonggi Bay generally parallel to the direction of tidal current on the sea bottom are also well shown in seismic profiles, surface and core samples were obtained from sand ridge field near the Palmi Do for the study of origin and sedimentary environments of these sand ridges. Sand ridge field near Palmi Do can be divided into 3 seismic units(unit A, B, C), and each unit has one sand ridge(ridge A, B, C), Ridge A that shows clinoform prograding southeastwards is generally parallel with tidal current trending northeast to southwest(40$^{\circ}$). It means that sand ridge is migrating to southward. Unit B includes a sand ridge and a channel fill structure in seismic profiles. Compared with ridge A, ridge B has similar direction, magnitude and internal reflectors. So ridge B developed in the similar sedimentary environments to ridge A about 10 m lower than present sea level. As the rise of sea level, channel fill structure formed as the deposit of fine sediments with the shape of conformable bedding or horizontal bedding.

  • PDF

On the penecontemporaneous deformation structures of the Sinri area at the mid western boundary of the Jinan Basin (진안분지 서변 중앙부 신리지역의 준퇴적동시성 변형구조)

  • Lee Young-Up
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.8-19
    • /
    • 1998
  • In the Sinri area located at the mid western boundary of the Jinan basin, the Manduksan Formation which mainly consists of coarse sandstone narrowly intercalated with shale and the alternation of sand and shale and the Dalgil Formation mainly of shale are distributed. It consists of four lithofacies, such as coarse sandstone, interbedded sandstone/shale, shale and volcanic rock lithofacies. All sediments are interpreted to be deposited by turbidity currents and free fallouts in a lacustrine basin. In these rocks many penecontemporaneous defomation structures are observed such as fold and thrust fault at large scale, and swelling, boudin structure, flame structure, load structure, ptygmatic fold and convolute bedding at small scale. All these structures are developed between upper and lower undisturbed sedimentary strata. Two large folds are similar folds, but lower one gradually developed into concentric shape. The swelling structures by convergence of the sediments are observed in the hinge area and the boudin structures are developed in the limb. The thrust faults including minor folds and sandstone lobes show duplex structure with asymmetric and kink fold on and below in front of the detached sandstone layer. Development of the swellings, boudins and lobes indicates the flexbility of the sediments during deformational episodes. The folds and thrust faults rarely contain fractures relative their scales and lithologies. This feature also indicates the retrievability of sediments during deformation. At the flanks of the thrust faults the normal faults are formed contemporaneously. The deformation structures at small scale such as flame structures, load structures, ptygmatic folds and convolute beddings are syndepositional and penecontemporaneous, which show the effects of tectonic movements. All these deformed sedimentary structures of the Sinri area suggest the continuing tectonic movements during and/or after deposition.

  • PDF

전라남도 남악 일원에 분포하는 조간대 퇴적층의 전기비저항 연구

  • 김성욱;이현재;최은경;안윤희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.212-215
    • /
    • 2001
  • 남악지역에 분포하는 조간대 퇴적층의 층서구조와 퇴적심도 및 기반암의 단열구조를 파악하기 위한 전기비저항탐사를 실시하였다. 조간대 퇴적물에서 비저항은 하부로 갈수록 증가하며 대부분 3.0 Ohm-m이하의 비저항으로 고비저항의 기반암의 기반암과 뚜렷한 경계를 보여준다. 퇴적층의 층후는 퇴적지 중앙부에서 30m를 최대로 북쪽 (고해안선)과 남쪽 (영산강)으로 갈수록 감소하는 경향을 보여주는데 선행 조사된 시추결과와 일치한다. 일부 지역의 전기비저항 해석단면과 시추단면에서 견고한 점토질 (stiff)의 지층이 분포하는데 이 지층은 북서-남동 방향의 고해안선과 나란하게 분포한다. 이것은 퇴적물을 공급한 흐름의 방향과 조간대의 확장방향이 북서-남동 방향임을 지시한다. 기반암의 단열구조로 판단되는 저비저항대는 조사지역의 동부에 집중되어 있으며 단열대의 연장방향은 북서-남동 방향이 우세하다.

  • PDF

An Experimental Study on Depositional Environments and Consolidation Properties of Shihwa Deposits (시화지역 퇴적층의 퇴적환경과 압밀특성에 관한 연구)

  • 원정윤;장병욱;김동범;손영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.49-58
    • /
    • 2004
  • Consolidation properties of Shihwa deposits were analysed by means of depositional environments. Depositional environments including particle size distributions, sediment structures, geochemical properties, porewater chemistries and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests (CKoUC) for undisturbed samples were performed to examine the overconsolidation phenomena. Based on the results of analysis of depositional environments, it was found that the upper silt/clay mixed layer was deposited under marine condition while underlying sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had occurred in marine deposits, overconsolidation ratios of the upper marine samples were greater than unity Stress Paths of the upper marine samples behaved similarly to those of normally consolidated clays. Data plotted in stress state charts showed that the marine deposits were normally consolidated in geological meaning. These apparent overconsolidation of the marine deposits can be explained by the structures i.e. chemical bonding due to the difference of the rate of deposition, not by geological erosions and ground water fluctuations.

Submarine Layer Structure By Seismic Reflection Survey Between Geoje Island And Namhae Island (탄성파 탐사로 본 거제도 남해도간의 해저지층 구조)

  • Song, Moo-Young;Jo, Kyu Chang
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • A seismic reflection Survey was carried out in the offshere area between Geoje Island and Namhae Island, utilizing the echosounder with the frequency 28KHz and thd Uniboom with the filter band 800∼2000Hz. The results show the submarine topography, sedimentary layer structure and the depth distribution of the base rock. The water depth of the sea in the survey area is less than 80m; up to 40m contour line the sea bottom surface has a slight dip(about 1/1000), while in the zone deeper than 40m the bottom topography has a irregular relief. The thickness of the whole sedimentary deposit is about 20∼70m and divided into 3 layers: Upper layer(A layer) with horizontal laminae, intermediate layer(B layer) with cross-bedding and groove structure, and lower layer(C layer) not showing any sedimentary structure on the seismic reflection profile. The surface of the base rock is deeper gradually in the south-eastern part of the survey area and extends to 140m depth. The vertical sediments sequences, composed of B layer and A layer, show the type of transgressive sequences. It is interpreted that B layer was formed at one period when the sea level was lower 40∼60 than the present and ince then, following the rising of the sea level, A layer was deposited.

  • PDF

PRELIMINARY INTERPRETATION OF DEPOSITIONAL ENVIRONMENT AND GEOLOGICAL STRUCTURE OF THE JEJU BASIN IN THE SOUTH SEA OF KOREA (남해 제주분지 해역의 퇴적환경 및 지질구조 예비 해석)

  • SikHuh;DongLimChoi;HaiSooYoo;DongJuMin;JongKukHong;KwangJaLee
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.225-232
    • /
    • 2004
  • To investigate the depositional environment and the geological structure of the Jeju Basin in the South Sea of Korea, we acquired 54-channel seismic data of about 1,980 line-km. The study area lies at the northeastern part of the East China Sea Trough, a Tertiary back-arc basin. The sedimentary basin formed by rifted activities resulted in the formation of graben and/or half-graben structures. The basin is composed of pre-rift, syn-rift and post-rift sediments bounded by regional unconformity. The pre-rift and syn-rift sediments consist of Oligocene, Early and Middle Miocene sequence, whereas the post-rift sediments consist of Late Miocene and Plio-Pleistocene sequences. Seismic and well data from the Jeju Basin indicate that Oligocene-Miocene sediments were deposited under fluvial and lacustrine depositional conditions. Following compressional tectonic movements in the Late Miocene time and a subsequent period of erosion, regional subsidence during the Pliocene time brought the Jeju Basin under marine conditions, resulting in the deposition of dominantly marine sediments.

  • PDF