• Title/Summary/Keyword: 퇴적물 배양

Search Result 50, Processing Time 0.033 seconds

Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments (갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출)

  • Byun Ki-Deuk;Lee Jung-Hyun;Lee Kye-Joon;Kim Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.168-176
    • /
    • 2005
  • Vibrio vulnificus, one of the marine bacterial pathogens causing septicemia, was detected using molecular methods, namely, PCR and/or Southern hybridization, and real-time PCR. Extracted and purified total DNAs by using commercial kits were used as templates for PCR. Multiplex-PCR was conducted by employing three sets of primers for the genes, hemolysin (vvhA), phosphomannomutase (pmm), and metalloprotease (vvpE), for V vulnificus virulence. The presence of DMSO ($5\%$) and BSA ($0.1\%$) in PCR reaction mixture improved a detection efficiency by higher PCR band intensities. TaqMan real-time PCR was carried out by using gene segment of vvhA as a target. Detection limit of PCR/Southern hybridization without enrichments was to be around $10^2\;cells\;g^{-1}$ of sample. However, those three methods using the enrichment at $35^{\circ}C$ in APW showed high sensitivity ($2\~10\;cells\;g^{-1}$ of sediments). Highly sensitive detection of V vulnificus by real-time PCR was achieved within $5\~6$ hr, whereas the detection by PCR/Southern hybridization required about 36 hr. Thus, it was evident that real-time PCR is the most rapid and efficient method for detecting V vulnificus in tidal flat sediments.

Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc (Tofua Arc의 열수구환경으로부터 호열성 혐기성 고세균(Thermococcus)의 농화배양 및 동정)

  • Cha, In-Tae;Kim, So-Jeong;Kim, Jong-Geol;Park, Soo-Je;Jung, Man-Young;Ju, Se-Jong;Kwon, Kae-Kyoung;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Hydrothermal vents (HTV) provide special environments for evolution of lives independent on solar energy. HTV samples were gained from Tofua arc trench in Tonga, South Pacific. We investigated archaeal diversity enriched using combinations of various electron donors (yeast extract and $H_2$) and electron acceptors [Iron (III), elemental sulfur ($S^0$) and nitrate. PCR amplification was performed to detect archaeal 16S rRNA genes after the cultures were incubated $65^{\circ}C$ and $80^{\circ}C$ for 2 weeks. The cultures showing archaeal growth were transferred using the dilution-to-extinction method. 16S rRNA gene PCR-Denaturing Gradient Gel Electrophoresis was used to identify the enriched archaea in the highest dilutions where archaeal growth was observed. Most of cultured archaea belonged to genus of Thermococcus (T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens) with 98-99% 16S rRNA gene similarities. Interestingly, archaeal growth was observed in the cultures with Iron (III) and nitrate as an electron acceptor. It was supposed that archaea might use the elemental sulfur generated from oxidation of the reducing agent, sulfide. To cultivate diverse archaea excluding Thermococcus, it would be required to use other reducing agents instead of sulfide.

Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula (남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거)

  • Heo, Nak-Won;Lee, Ji-Young;Choi, Jae-Ung;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.81-96
    • /
    • 2011
  • Sediment oxygen demand(SOD) and denitrification rates were measured in four major estuaries(Suncheon Bay, Seomjin river estuary, Goseong stream estuary and Masan Bay) in south coast of Korean peninsula from March of 2009 to May 2010 to estimate organic matter cleaning capacity. SOD was estimated from the temporal dissolved oxygen concentration change and isotopic pairing technique was employed to measure denitrification. Sediment oxygen demand(SOD) was ranged from -5.1 to 24.6 mmole $O_2m^{-2}d^{-1}$ and denitrification rate was ranged from 0.0 to 3.9 mmole $N_2m^{-2}d^{-1}$in the study area. SOD was the highest in Masan Bay(-2.2 to 19.2, average = 10.2 mmole $O_2m^{-2}d^{-1}$) and Suncheon, Goseong, Tae-an and Seomjin followed. Denitrification was also the highest in Masn Bay(0.0 to 3.9, average = 1.0 mmole $N_2m^{-2}d^{-1}$) and Goseong, Seomjin, Suncheon and Taean followed. The effect of benthic photosynthesis by microphytobenthos on denitrification was evident in some season of Tae-an, Seomjin, and Masn Bay. The increased oxygen level produced by photosynthesis stimulated nitrification without severe adverse effect on denitrification and, as a result, coupled nitrification and denitrification was enhanced in these areas. A difference of seasonal patterns of denitrification at each site depended on relative importance of denitrification on different nitrate source($D_w$: nitrate from water column and $D_n$: nitrated produced during nitrification). Denitrification was maximum during spring in Goseong, Suncheon and Masan Bay. On the contrary, denitrification was the highest during summer in Tae-an and Seomjin estuary.

Nitrate Flux at the Sediment-Water Interface in the West-Nakdong River Estuary (서낙동강 하구에서 퇴적물과 강물 경계면을 통한 질산염의 플럭스)

  • Lee, Tae-Hee;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.635-646
    • /
    • 2004
  • Chronic outbreaks of green tide in the Nakdong estuary toll a heavy socioeconomic cost. The paper investigates the influence of sediments on the nitrogen eutrophication, being claimed as the primary cause of green tide. To measure the flux of nitrate at the sediments-water interface, sediment cores were taken in Jan., Mar., May and Sep., 2000 at Noksan located in the West-Nakdong river estuary. The dissolved oxygen was profiled and then the pore water was extracted in situ. Core samples were analyzed for their textural characteristics. Cores were incubated by a novel technique to measure the fluxes of nitrate $(NO_3^-)$ and ammonia $(NH_4^+)$ at the sediment-water interface. The dissolved oxygen was depleted usually within several millimeters in the top sediments. Nitrate started to decrease drastically at the layer where dissolved oxygen was nearly depleted. Nitrate was also exhausted within several centimeters, followed by ammonia build up rapidly. The flux at the sediments-water interface calculated from the pore water concentrations revealed that nitrate was removed from the water column into the sediments. The sediment incubation experiment confirmed the above result. On the other hand ammonia were released from the sediment to the water column. As the incubation went on, however, the nitrate concentration in the overlying water was dropped below that of a top sediment. Then the flux is reversed, i.e., nitrate was released from the sediments to the water column. The implication is that the sediment can supply nitrate to the water column if it falls below a certain level. Thus it is likely that sediments in the eutrophicated river buffers the nitrate concentration in the water column, which leads to a prolonged green tide.

Effects of Selenate and Sulfate Ion Interaction in Nutrient Solution OH the Growth Of Artemisia molngotica var. tenuifolia (배양액 내의 Selenate 와 Sulfate 이온의 상호작용이 참쑥의 생육에 미치는 영향)

  • Lee, Yun-Jeong;Park, Kuen-Woo;Suh, Eun-Joo;Cheong. Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.63-70
    • /
    • 1998
  • This study was carried out to investigate the interaction of selenate and sulfate ion in nutrient solution supplyed with selenate ion. At early growth stage, the growth of Mongolian wormwood was best at 3mM sulfate ion and 2mg/$\ell$Na$_2$SeO$_4$ treatment. As they were grown and matured, at the later growth stage, the effect of antagonism between selenate and sulfate ion on the growth of each plant decreased. At supplying with selenate ion in nutrient solution, the uptake of selenate by plant had negative correlation with sulfate ion concentration in nutrient solution. The higher sulfate ion concentration, the less selenium uptake. However, the effect of antagonistic interaction of selenate and sulfate ion on the selenium uptake increased with plant age. Whereas, the uptake of sulfate ion had positive correlation with sulfate ion concentration in nutrient solution at supplying with selenate ion in nutrient solution. The uptake of sulfate ion increased with increase of sulfate ion concentration in nutrient solution. The effect of this interaction with selenate and sulfate ion increased with growth and maturity of plant. However, at 3mM sulfate ion concentration in nutrient solution, sulfate ion concentration in plant tissue decreased markedly.

  • PDF

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

Distribution Characteristics of Heavy Metals for Tidal Flat Sediments in the Saemankeum Area (새만금 갯벌의 중금속 분포 특성)

  • KIM Jong-Gu;YOO Sun-Jae;CHO Eun-Il;AHN Wook-Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This study was conducted to evaluate distribution and behavior characteristics of heavy metals for tidal flat sediments in the Saemankeum area. The value of heavy metal contents in the tidal flat sediments were higher than that surveyed in 1994, but showing that it's lower when compared with the value of Shiwha lake. Enrichment factors in the tidal flat sediments showed below 1 except for Pb and Zn. Metal excesses was appeared that Cu, Cr, Fe, Mn lacked and Pb, Zn were high. The correlation analysis between heavy metals and organic matters was found high positive relationship (r=0.424$\~$0.839), especially correlation coefficient between ignition loss and oxide Al, Fe, Mn showed high positive relationship above 0.7. The correlation analysis between Brain size and hear metals was found that as grain size was small, heavy metals contents were increased. Correlation coefficient between silt and heavy metals except for Cu, Pb showed high positive relationship as 0.552$\~$0.732.

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究) II. 저온내성(低溫耐性) Clostridia 의 분리(分離))

  • Jung, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.311-320
    • /
    • 1994
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methane-producing clostridia which were selected for using them as inoculum to anaerobic fermentation of agricultural and livestock wastes at low temperature. The results were; 1. Low temperature tolerant methane-producing clostridia were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in cellulose medium. These clostridia, Clostridium botulinum SRC-64, Clostridium scatologens SRC-91 and Clostridium tyrobutyricum SRC-100, were isolated from swampy sediment at latitude $56.9^{\circ}N$, lake sediment IV at latitude $55.0^{\circ}N$, and tidal land soil II at latitude $37.0^{\circ}N$, respectively. The optimum growth temperature for these isolates was $37^{\circ}C$ and the minimum, around $10^{\circ}C$. They all had detectable amount of $F_{420}$, specific coenzyme of methanogens. 2. As anaerobic fermentation products of glucose SRC-64 produced $H_2$, acetic, isovaleric and caproic acid, SRC-91 produced $H_2$, propionic, butyric, valeric, and caproic acid, and SRC-100 produced only acetic and propionic acid. The isolates were produced $CH_4$ ranged from 2.6 to 8.68 n moles/ml for 2 days at $13^{\circ}C$.

  • PDF

Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea (전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구)

  • Kim, Yumi;Seo, Hyunhee;Jo, Kyoung-nam;Jung, Dayae;Shin, Seungwon;Huh, Min;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • Baekasan Acheon cave located in Hwasun-gun, Jeollanam-do is a natural limestone cave only found in this province. In this study, the mineralogical and geochemical characteristics of speleothems collected from Baekasan Acheon cave were identified and the capability of carbonate mineral formation by aerobic microorganisms enriched from the cave and the mineralogical and geochemical characteristics of carbonate minerals formed by the microorganisms were investigated. The samples of sediments (clay) and speleothems (shelfstone and cave coral) were collected at three sites in the cave. The samples of shelfstone and cave coral were identified mainly as carbonate mineral, Mg-rich calcite, and clay minerals were composed of quartz, muscovite, and vermiculite by X-ray diffraction (XRD) analysis. To cultivate the carbonate forming microorganisms, parts of the sediment and speleothems were placed in D-1 medium containing urea, respectively, and the growth of microorganisms was observed under the aerobic condition at room temperature. The capability of carbonate mineralization of the cultured Baekasan Acheon cave microorganisms was examined through adding 1% (v/v) of the cultured microorganisms and calcium sources, Ca-acetate or Ca-lactate, into the D-1 medium. XRD analysis showed that the microorganisms cultured in cave deposits formed calcium carbonate ($CaCO_3$) under all conditions, and these microbial carbonate minerals included calcite and vaterite. The morphological characteristics and chemical composition of biologically formed minerals were observed by SEM-EDS showed various crystal forms such as rhomboid, spherical, perforated surface with Ca, C, and O of major chemical components. The existence of such microorganisms in the cave can contribute the formation of carbonate minerals, and it is likely to affect the geochemical cycles of carbon and calcium in the cave.