• Title/Summary/Keyword: 퇴적결층

Search Result 6, Processing Time 0.021 seconds

Stratigraphy and Paleoceanography of deep-sea core sediments from the Korea Deep Ocean Study (KODOS)-97 Area, Northeast Equatorial Pacific (북동태평양 KODOS-97지역 주상 퇴적물의 층서 및 고해양학적 연구)

  • Park, Jeong-Hee;Kim, Ki-Hyune
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.50-62
    • /
    • 1999
  • Sediment core samples recovered from the Korea Deep Ocean Study (KODOS)-97 area were divided into two or three units according to their distinct changes in sediment colors and chemical and physical properties. Analyses of radiolarian faunas in the sediments and $^{10}Be$ ratios in each unit were performed to reveal stratigraphic and paleoceanographic history of the study area. In the upper part of the sediments, Tertiary radiolarians were mixed at various proportions with Quaternary assemblages probably by reworking process of bottom current and benthic animals. Dissolution of radiolarians was severe in deeper depth and in the Unit III, only few of the fragments of corroded Tertiary radiolarians were detectable. The mid layer of the Unit I belonged to Collosphaera invaginata Zone, the time period of 0.21 Ma. The Unit II belonged to Collosphaera tuberosa Zone with the time period younger than 0.42 Ma which was observed above the Stylatractus universus Zone. The Unit III is assigned to Tertiary, which is younger than the Late Eocene. Composition analyses of radiolarian assemblage and $^{10}Be$ ratio data indicated hiatus periods of more than 3 My between late of Middle Miocene and Pliocene resulting from erosion and dissolution caused by Antarctic Bottom Water. Stratigraphic evidence from radiolaria was well correlated with $^{10}Be$ data. Sedimentation rate during Quaternary can be suggested as 0.15-0.5 mm per 1000 years. Dominance of warm-water radiolaria species and the results reflected minimum climatic changes of tropical conditions.

  • PDF

Stratigraphic Sequence and Depositional Environment of Unconsolidated Deposits in the West Seacoast (서해안 미고결 지층의 퇴적이력 및 퇴적환경)

  • Lee, Yong-Mok;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Kyu-Hwan;Yoon, Yeo-Jin;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.55-68
    • /
    • 2012
  • The west seacoast has approximately 83% of tidal flat in Korea. Gyeonggi-do and Inchon has 35.1%. This study was carried out to understand depositional environment and properties of tidal deposits that distributed in the Gyeonggi bay. On the basis of observation and description on mineralogical, geochemical, physical properties, detailed sedimentary unit has been respectively distinguished Based on. stratigraphic position, facies and unconformity, the intertidal zones are classified into four sedimentary units, and bedrock over the units has been developed in the order of Unit 4${\rightarrow}$Unit 3${\rightarrow}$Unit 2${\rightarrow}$Unit 1. The intertidal sediment deposits of Gyeonggi Bay were compared with those of west coast. In Cheongra area all strata of Unit 4-Unit 3-Unit 2-Unit 1 appear. In Yeongjong-do Unit 2-Unit 1, in Incheon Bridge and Songdo area Unit 4-Unit 3-Unit 1 are observed. In Daesan area Unit 4-Unit 3-Unit 1 are observed. Average clay mineral content ratio is 8.2% in Cheongra area, 2.9% in Yeongjong Island, 18.4% in Incheon Bridge, 24.6% in Songdo area.

A Shear Strength Characteristics in Deep-sea Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 전단강도 특성)

  • 지상범;강정극;김기현;박정기;손승규;고영탁
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.255-267
    • /
    • 2004
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were analyzed for shear strength properties to understand sedimentological process. The pelagic red clay from northern part of study area shows low average shear strength(4.4 kPa), while the siliceous sediment from middle area shows high(6.3 kPa). The calcareous sediment from southern area shows very low average shear strength(3.4 kPa), and transitional sediment between middle and southern area shows intermediate value(3.8 kPa) between siliceous and calcareous sediment. The depth profiles of average shear strength of pelagicred clay show gradual increment with depth due to decrease of water content with depth by general consolidation process. On the other, abrupt increment of average shear strength with depth in siliceous sediment is related to sedimentary hiatus. The very low shear strength in calcareous sediment is linked to very high sedimentation rate ofsouthern area compared with other study area.

A Paleomagnetic Study of Deep-Sea Cores from the KODOS-90 Area in the North Pacific (북태평양 KODOS-90 지역 심해저 퇴적물의 고지자기 연구)

  • 도성재;박찬호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • A paleomagnetic study was carried out on three gravity cores recovered from the KODOS-90 area in the North Pacific to obtain a magnetostratigraphic information and to correlate the magnetic records between cores. The sediments bear a stable remanent magnetization and the polarity sequence of the three cores can be correlated with the gomagnetic polarity time scale for the Plio-Pleistocene. The abrupt change in the magnetic susceptibility profile at 285 cm depth of the gravity core 26 indicates the presence of a major hiatus. The average sedimentation rates of the gravity cores 08 and 26 are about 2.7 and 1.4 times higher than that of the gravity core 20 (0.09 cm/100yr), respectively.

Radiolarian Biostratigraphy and Paleoceanographic Study from the Northeast Equatorial Pacific (북동태평양지역의 방산충 생층서 및 고해양환경 연구)

  • Kim, Ki-Hyune;Park, Jeoung-Hee
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • Radiolarian assemblages from KODOS area were analyzed in order to understand the biostratigraphy and paleoceanography of deep-sea sediment from the Northeast Equatorial Pacific. The sediment core was divided into two or three units on the basis of the chemical and physical properties. In the upper sediment, mixtures of Quaternary and Tertiary radiolarians are found indicating active reworking processes. Dissolution of radiolarians seem to increase with depth. Radiolarians are seldom in Unit III presumably due to dissolution and corrosion. The middle part of unit I appears to correspond to Collosphaera invaginata Zone (0.21 Ma). Unit II belongs to Collosphaera tuberosa Zone. Based on the absence of Stylatractus universus, we estimate its age to be younger than 0.42 Ma. Based on our analyses of radiolarians in Unit I and II, we estimated the age of unit III as Tertiary, particularly from Oligocene to Miocene. There may to be hiatuses of more than 3 My from late Miocene to Pliocene, which probably resulted from erosion and dissolution by the Antarctic Bottom Water Sedimentation rates during Quaternary range from 0.15 to 0.50 mm/ky with significant variabilities among stations. Radiolarians in the study area were mostly warm-water species.

  • PDF

Sedimentary Characters of the Core Sediments and Their Stratigraphy Using $^{87}Sr/^{86}Sr$ Ratio in the Korea Plateau, East Sea (동해 한국대지 코어퇴적물의 특성과 $^{87}Sr/^{86}Sr$ 초기비를 이용한 퇴적시기 규명)

  • Kim, Jin-Kyoung;Woo, Kyung-Sik;Yoon, Seok-Hoon;Suk, Bong-Chool
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.328-336
    • /
    • 2007
  • A piston core (587 cm long) was recovered from the upper slope of a seamount in the Korea Plateau. Three episodes of sedimentation were identified based on sedimentary facies, grain size distribution, carbonate constituents and initial $^{87}Sr/^{86}Sr$ ratio of carbonates. The lower part of the core, Unit I-a (core depth $465{\sim}587cm$) is composed of shallow marine carbonate sediments the deposited by storm surges, and is about $13{\sim}15Ma$ (Middle Miocene) based on $^{87}Sr/^{86}Sr$ initial ratio. This suggests that the depositional environment was relatively shallow enough to be influenced by storm activities. Unit I-b (core depth $431{\sim}465cm$) is mostly composed of turbidites, and Sr isotope ages of bivalves and planktonic formaminifera are about $11{\sim}14\;and\;6{\sim}13Ma$, respectively. This indicates that the Korea Plateau maintained shallow water condition until 11 Ma, and began to subside since then. However, planktonic foraminifera were deposited after 11 Ma and redeposited as turbidites as a mixture of planktonic foraminifera and older shallow marine carbonates about 6 Ma ago. Unit II (core depth $0{\sim}431cm$) is composed of pelagic sediments, and the Sr isotope age is younger than 1 Ma, thus the time gap is about 5 Ma at the unconformity. About 1 Ma ago, the Korea Plateau subsided down to a water depth of about 600 m. The sampling locality was intermittently influenced by debris flows and/or turbidity currents along the slope, resulting the deposition of re-transported coarse shallow marine and volcaniclastic sediments.