본 논문의 목적은 링크통행시간 자료를 수집하는 시스템에서 소요 프로브차량대수에 영향을 주는 요소들을 규명하고. 최적의 소요 프로브차량대수를 결정하는 모형을 개발하는데 있다. 자가용승용차, 택시, 버스, 택배차량 등 여러 종류의 차량들이 프로브차량으로 사용될 수 있다. 그러나 일정한 정확도 이상의 교통정보를 수집하기 위해서 얼마나 많은 프로브차량이 필요한지에 대한 연구는 그다지 깊이 있게 이루어지지 않았다. 적정 소요 프로브차량대수는 링크통행시간 자료수집 기술 수집대상 링크의 공간적 범위, 프로브차량의 종류 및 운행 특성, 자료수집 시스템의 신뢰도, 수집되는 자료의 정확도 등에 영향을 받게 된다. 소요 프로브차량대수를 결정하는 링크당 평균 통행시간 자료수, 프로브차량 밀도의 최소 확률, 그리고 자료 미수집링크의 허용비율의 3가지 결정기준이 정의되었다. 또한 이러한 결정기준에 대해 소요 프로브차량대수를 산출하는 모형이 개발되었다. 일반적으로 주기당, 링크당 평균 필요 통행시간 자료수$(d_R)$, 단위길이당 프로브차량의 대수 또는 밀도$(n_{min} or {\alpha})$, 일정 프로브차량밀도 이상의 확률($\beta$), 그리고 자료 미수집링크의 비율($\gamma$)이 클수록 소요 프로브차량대수는 증가한다. 민간 교통정보회사의 통행시간 수집시스템에서 소요 프로브차량대수를 산정하는 사례연구가 수행되었으며, 여러가지 조건에서 소요 프로브차량대수가 산출되었다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.4
/
pp.86-98
/
2018
Since 2015, the Korea Expressway Corporation has provided predicted travel time information, which is reproduced from DSRC systems over the extended expressway network in Korea. When it is open for public information, it helps travelers decide optimal routes while minimizing traffic congestions and travel cost. Although, sutiable evaluations to investigate the reliability of travel time forecast information have not been conducted so far. First of all, this study seeks to find out a measure of effectiveness to evaluate the reliability of travel time forecast via various literatures. Secondly, using the performance measurement, this study evaluates concurrent travel time forecast information in highway quantitatively and examines the forecast error by exploratory data analysis. It appears that most of highway lines provided reliable forecast information. However, we found significant over/under-forecast on a few links within several long lines and it turns out that such minor errors reduce overall reliability in travel time forecast of the corresponding highway lines. This study would help to build a priority for quality control of the travel time forecast information system, and highlight the importance of performing periodic and sustainable management for travel time forecast information.
The objective of this research is to keep track of path travel time using methods of collecting traffic data. Users of traffic information are looking for extensive information on path travel time, which is referred to as the time taken for traveling from the origin to the destination. However, all the information available is the average path travel times, which is a simple sum of the average link travel times. The average path travel time services are not up to the expectation of traffic information consumers. To improve provide more accurate path travel time services, this research makes a number of different estimates of various path travel times on one path, assuming it will be under the same condition, and provides a range of estimates with their probabilities to the consumers, who are looking for detailed information. To estimate the distribution of the path travel times as a combination of link travel times. this research analyzes the relation between the link travel time and path travel time. Based on the result of the estimation. this research develops the algorithm that combines the distribution of link travel time and estimates the path travel time based on the link travel times. This algorithm was tested and proven to be highly reliable for estimating the path traffic time.
본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.1
/
pp.17-34
/
2022
This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.
This research develops a model of participation and scheduling choice of urban leisure activity. A nested legit model was found to be an appropriate approach. Data collected from Deagu and Pohang City were used for empirical estimation of model parameters. The empirical results confirmed several behavioral aspects associated with participation and scheduling choice of urban leisure activity. The paper presents a discussion on implications that can be inferred from the empirical results. Finally, future potential research question are also discussed.
최근 고속도로의 길이와 운전 차량 수가 빠른 속도로 증가하고 있어 운전자들에게 고속도로 교통상황를 신속하고 정확하게 제공하는 것이 중요한 문제로 대두되고 있다. 고속도로통행료수납시스템(TCS: Toll Collection Systrem)은 전국 고속도로를 주행하는 차량의 통행 정보를 실시간으로 제공하므로 교통 상황 예측에 유용하게 활용될 수 있다. TCS 자료는 차량이 입구영업소를 통과한 후 출구영업소를 통과하는 데 소요된 시간으로서, 운전한 시간, 휴게소 체류시간 등을 모두 포함한 통행시간으로 운전자의 운전 특성, 통행 목적, 피로의 정도에 따라 편차가 크게 나타난다. TCS 자료의 통행시간을 기초로 예측된 정보는 이러한 불확실성을 포함하고 있기 때문에 이를 활용하기 다양한 데이터처리 기법이 필요하다. 본 논문에서는 TCS 자료의 효율적인 전처리 및 교통 예측 기법 현황에 대하여 기술하고 향후 발전 방향을 제시하였다.
Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.
Travel time reduction benefit is the most important benefit item in the feasibility study of transportation infrastructure investment projects and calculated by using the value of travel time. The current feasibility study guideline (5th edition) calculate the value of non-business ravel time in a metropolitan area, using the ratio of the value of non-business travel time to business travel time calculated based on the nationwide inter-regional traffic survey data of 1999. The characteristics of metropolitan trips are different from those of nationwide regional trips. Metropolitan trips have frequent transfers between multiple public transits and long-time commuter trips. Therefore, this research aims to calculate the value of travel time reflecting traffic characteristics in a metropolitan area by improving the limitation of current calculation methods. To reflect these characteristics, this research extracts commuter trips from non-business trips and calculates the value of travel time for commuter trips. The results of the likelihood ratio test for the commuter trip model and the non-business trip model are found to be statistically significant. An integrated public transportation model was also estimated in this study to reflect the trip conditions of the Seoul metropolitan area integrated fare system. The results of comparing coefficients between bus and subway in the integrated public transit model indicated that there were no statistically significant differences between the two modes.
This study analyzed factors affecting daily travel times at each stage of commuters' life cycle. In this study, travel times were dealt with in the context of trip chain. That is, the travel time was defined as the total amount of time commuters had spent to move for daily activities from leaving to coming back home. A commuter's life cycle was divided into 6 stages on a basis of both householder's age and family type: i.e., the unmarried youth period, the family forming period, the children education period, the children youth period, the children independence period, and the aged period. Variables such as commuting times, home-based trip cycle recurrences, and the number of stops differed for each stage of life cycle, the latter of which represents how many places a commuter dropped by during a trip cycle. Several factors were found to affect commuting times at each stage of life cycle as a result of applying a Cox proportional hazard model. The empirical study was conducted using 2010' household travel survey data collected from Gyeonggi-do.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.