• Title/Summary/Keyword: 통행각도

Search Result 10, Processing Time 0.028 seconds

Optical Flow Based Vehicle Counting and Speed Estimation in CCTV Videos (Optical Flow 기반 CCTV 영상에서의 차량 통행량 및 통행 속도 추정에 관한 연구)

  • Kim, Jihae;Shin, Dokyung;Kim, Jaekyung;Kwon, Cheolhee;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.448-461
    • /
    • 2017
  • This paper proposes a vehicle counting and speed estimation method for traffic situation analysis in road CCTV videos. The proposed method removes a distortion in the images using Inverse perspective Mapping, and obtains specific region for vehicle counting and speed estimation using lane detection algorithm. Then, we can obtain vehicle counting and speed estimation results from using optical flow at specific region. The proposed method achieves stable accuracy of 88.94% from several CCTV images by regional groups and it totally applied at 106,993 frames, about 3 hours video.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

A Study of Impact Factors and Barrier Height of Compact Car Road for Decision of Barrier Type (소형차도로 방호울타리 형식선정을 위한 충돌계수 및 방호울타리 높이선정 연구)

  • Choi, Hyun-Ho;Kim, Ki-Hwan;Lee, Eui-Joon;Yi, Sang-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.605-613
    • /
    • 2010
  • In this study, Impact factors are represented and barrier height of compact car road of safety barrier is suggested through the investigation of applying problems of existed standard of general car road. For this, traffic accidents analysis is performed and based on the analysis, impact vehicle weight, impact Angle, crash velocity, and barrier height are investigated. For the decision of impact angle, analysis is carried out by comparison of RISER and 2-lines expressway accidents data. Through this, higher-impact angle is suggested. Vehicle weight data of sub-compact car, small vehicle, medium and large vehicle, SUV, small truck is surveyed and analyzed. Based on the accident accumulation rate, regression analysis of vehicle weight impact and impact velocity is performed. Also, based on the cumulative rate of vehicle weight on expressways near Seoul, barrier height of compact car road is calculated. It is noted that the results of this study will be contributed to the decision of barrier type.

Transit Mobility Measures on the Seoul Multimodal Network (대중교통망 이동성지표 개발(네트워크 분석을 중심으로))

  • Noh, Hyun-Soo;Doh, Tcheol-Woong;Kim, Won-Keun;Cho, Chong-Suk;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.7-17
    • /
    • 2005
  • Transportation is from an individual mobility. Various efforts to propose specific values or the individual mobility have been conducted in diverse transportation environment. However, mobility studies for multimodal public transportation are rare especially on not the range of line but area. This study propose a method to calculate transit mobility indices as expanding mobility analysis from point-to-point to area-to-area, considering access time to transit facility, running time and transfer time of passengers. To extract mobility indices, we included walking as a lowest category of mode and set passenger car as a competitive mode to transit mode. This study propose three public transportation mobility indices as 1) how competitive public transportation facility is offered against passenger car 2) how convenient transit mode including walking is provided against passenger car from origin to destination and 3) how many various paths are presented to support passenger's travel between regions. These indices are tested on the Seoul metropolitan area with 10 lines of urban rail and about 420 lines of bus. In addition, we proposed two political applications of proposed mobility indices to increase public transportation mobility between two regions and to maximize the mobility of study area when a line is added in the area.

Vehicular Impact Model and Installation Locations for a High Performance Median (중앙분리대 사고자료 분석을 통한 설계 하중모델 개발 및 고성능 중앙분리대 설치 위치 선정)

  • Jeong, Yoseok;Lee, Ilkeun;Lee, Jaeha;Kim, WooSeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • The number of vehicle-to-barrier collisions has increased due to improved driving environments. In addition, it is reported that the number of accidents led to impact severity larger than current capacity of a median barrier has increased. It is required to develop a high performance median barrier in order to secure expressway safety. This paper aims at proposing impact loading model and locations for a high performance median barrier based on analysis of median-barrier-related accident history. The SB6 test level (Impact severity: 420 kJ, Mass: 25 ton, Impact speed: 80 km/h, Impact angle: $15^{\circ}$) was suggested for target impact severity based on statistical data analysis. The suitable locations also were proposed from investigation of driver behaviors for installation and rehabilitation of high performance median barrier.

The Relationship between Violation of Designated Lane Usage and Accident Severity on Freeways (고속도로 지정차로제 위반과 교통사고 심각도와의 관계분석: 화물차량을 대상으로)

  • Kim, Joo-Hee;Lee, Soo-Beom;Kim, Da-Hee;Hong, Ji-Yeon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.119-127
    • /
    • 2012
  • For traffic safety, it is imperative for motorists to secure their clear view and to maintain a similar speed with others while driving in a lane. Large-sized vehicles at lower speeds, however, are likely to increase the risk of accident when they share a lane with cars. Although to overcome this complication the Korean Road Traffic Act established rules for the safe use of roads, the reality is that the rules are seldom observed strictly. In this light, this study was designed to analyze the severity of truck-involved accidents, thereby providing justification for the need of truck-designated lanes and thus contributing to measuring road safety more precisely. A binomial logistic regression model was applied to analyze the severity of truck-involved accidents. The analysis showed that several variables affect the severity of truck-involved accidents on freeways; i.e., violation against the rule of truck-designated lanes, weather, difference between daytime and nighttime, and parking on road shoulder. Moreover, the strong enforcement will be needed to make motorists observe the rule, because a Wald statistical test showed that the violation against the rule of truck-designated lanes has the largest influence on the severity.

Assessment of Running Speed of Large Logging Trucks on the Forest Road Structure (임도 구조에 따른 대형 목재운송차량의 주행속도 분석)

  • Hwang, Jin-seong;Lee, Kwan-hee;Ji, Byoung-yun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.622-629
    • /
    • 2021
  • This study analyzed the running speed of logging trucks (25 tons), depending on the structural state of forest roads, on four main forest roads in the national forest management offices in Chuncheon and Hongcheon for trafficability. The speeds for the curved and straight sections were 7.6 km/h and 8.7 km/h, respectively, which were less than the designed speed (20 km/h). Thus, it would be necessary to improve the forest road's structure to fulfill minimum running speed. No significant difference was observed in the running speed by the longitudinal gradient up to 13%, while it was increased at more than 100 m by the distance in the straight section. By the facility's location in the curved section, the running speed was 6.2%-9.3% lower in a ridge than a valley. The running speed was lowest at the internal angles of <90° and at the curved radius of <15 m, respectively. When this radius was less than 15 m, the substandard sections for widening amounts were more than 50%; thus, sufficient widening was not achieved.

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

A Study of Opposing Left-Turn Conflict Severity at Signalized Intersections (신호교차로 대향좌회전 상충심각도 구분에 관한 연구)

  • Kim, Eung-Cheol;Park, Jee-Hyung;Oh, Ju-Taek;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2007
  • In 2004, the number of traffic crashes and deaths in Korea are 220,755 and 6,563, respectively. Korea Road Traffic Safety Authority reported that the number of traffic accidents occupies over 25% out of total accidents, and found that traffic crash probability is extremely high at intersections since intersections have various traffic conflict points. A Safety study using Traffic Conflict Technique is much more useful than a study using reported traffic accident data. Existing traffic conflict research hardly considered conflict severity occurring at intersections. So, the study developed new criteria considering conflict severity. Analytic methods precisely detecting crashing points using field surveying data, and applied an application of our new criteria. Opposing left-turn conflict criteria was devided by three groups(high severe conflict, middle severe conflict, and less severe conflict) based on conflict boundary by means of a standard vehicle length. After analyzing field surveying data(3hours), we found totally 41 opposing left-turn conflicts. 3 cases are high severe conflict, and another 10 cases are middle severe conflicts, and the other cases are less severe. Studies related in conflict severity are considerably important to evaluate intersection's detailed safety index, and existing studies(purely conflict counting does not consider severity) have a limitation to clearly determine the level of safety of intersections for an application.

  • PDF