• Title/Summary/Keyword: 통합 시스템 오차

Search Result 150, Processing Time 0.024 seconds

Modeling and Simulation Techniques for Performance Analysis of High Resolution SAR System (고해상도 영상레이더 성능 분석을 위한 모델링 및 시뮬레이션 기법)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Hyeon-Ik;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.558-565
    • /
    • 2013
  • In this paper, modeling and simulation for performance analysis of high resolution SAR system has been carried out in the time, frequency and numeric domain using ADS Ptolemy simulation tool of Agilent corporation. SAR system consists of antenna, controller and transceiver. Error parameters affecting SAR system performances have been defined, modeled and simulated such as phase noise of frequency synthesizer, amplitude and phase characteristic of TWTA, sampling frequency of waveform generator and I/Q imbalance. Finally, the development requirements of SAR system based on the impulse response function have been derived.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

ARWand based Interaction Method for In-situ Augmented Reality Authoring in Wearable Computing Environment (웨어러블 증강현실 환경에서 In-situ 증강현실 저작을 위한 ARWand 기반 상호작용 방법)

  • Ha, Tae-Jin;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.433-435
    • /
    • 2012
  • 웨어러블 증강현실 환경은 동적으로 움직이는 HMD와 ARWand로 인한 시스템 오차와 사용자 오차가 발생하기 때문에, 3차원 공간 상에 다양한 위치에 존재하는 3D 객체를 효과적으로 선택하고 6 DOF 조작하는 것이 어렵다. 이러한 문제점을 해결하기 위해서, HMD, ARWand, 3D 객체간의 기하정보를 기반으로 3D 객체의 선택 확률을 모델링하고, 통합적으로 해석하여 최고의 선택 확률을 가지는 3D 객체를 선택할 수 있도록 한다. 그리고 근/원거리에 위치한 3D 객체를 효율적으로 조작하기 위해서 ARWand의 조작-디스플레이 맵핑 방법을 제안한다. 이는 3D 객체의 자연스러운 6 DOF 직접-간접 조작을 가능하게 한다.

간섭무늬 자동화해석: 전문가 시스템

  • 주원중
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.3
    • /
    • pp.175-183
    • /
    • 1994
  • 간섭무늬기술을 효과적으로 사용하기 위하여, 간섭무늬 데이터를 빠르고 정확하게 간단히 줄여나가는 것이 필수적이다. 그러나, 심한 잡음이 존재할 때 현재 사용하는 방법을 적용하면 위상풀이에 오차가 생기거나, 무늬치수선정에 문제가 생겨, 근본적으로 대화식 수정작업이 필요하다. 결국 이러한 수동식 작업은 좀더 나은 완전한 자동해석을 위해 전문가시스템으로 대체할 수 있을 것이라 기대하여 왔다. 이 논문에서는 빠르고 기준 지식으로 조작할 수 있으며, 또한 유연성이 있는 새로운 통합 전문가시스템을 제시하였다. 이러한 조건을 만족 시키기 위해 고속 알고리즘에 적합한 C언어를 이용하여 전문가시스템의 쉘을 구성하였다. 이렇게 개발한 시스템이 간섭무늬해석의 전체 진행과정을 수행하게 하였다. 즉, 언어변환 해석을 하지 않고도 기준지식의 확보, 간섭 및 설명을 할 수 있으며 영상판독, 영상수정, 영상분할 및 형상추출 등을 수행하였다.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.

Precise positioning and error analysis method using GPS and GLONASS (GPS와 GLONASS를 동시에 이용하는 정밀 측위 및 오차해석)

  • Park, Chan-Sik;Song, Ha-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.74-83
    • /
    • 2004
  • The carrier phase measurements from GPS and GLONASS have different characteristics and therefore, have to be processed with different methods to provide precise positions or attitudes. In this contribution, at first, a measurement model is derived which can be used to not only GLONASS only applications but also both GPS and GLONASS applications. And then an error analysis of the proposed method performed using the derived model to derive analytic relationships between GDOP, PDOP and RGDOP. Finally, an integer ambiguity resolution method which was used in GPS is expanded to GPS and GLONASS. The proposed results can be directly applied to the design and analysis of GLONASS receiver and application programs. Furthermore, it is expected that the suggested method can also be effectively applied to combine the characteristically different measurements from the future satellite navigation systems such as GPS modernization, Galileo and QZSS.

Accuracy Improvement in Demand Forecast of District Heating by Accounting for Heat Sales Information (열판매 정보를 고려한 지역난방 수요 예측의 정확도 향상)

  • Shin, Yong-Gyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • In this study, to improve the accuracy of forecast of heat demand in the district heating system, this study applied heat demand performance among the main factors of district heating demand forecast in Pankyo area as the heat sales information of the user facility instead of existing heat source facility heat supply information, and compared the existing method with the accuracy based on the actual value. As a result of comparing the difference of the forecasts values of the existing and changed methods based on the performance values over the one week (2018.01.08 ~ 01.14) during the hot water peak, the relative error decreased from 7% to 3% The relative error between the existing and revised forecasts was 9% and 4%, respectively, for the five-month cumulative heat demand from February to February 2018, Also, in case of the weekend where the demand of heat is differentiated, the relative error of the forecasts value is consistently reduced from 10% to 5%.

Improving INS/GPS Integrated System Position Error using Dilution of Precision (Dilution of Precision 정보를 이용한 INS/GPS 결합시스템 위치오차 개선)

  • Kim, Hyun-seok;Baek, Seung-jun;Cho, Yun-cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.138-144
    • /
    • 2017
  • A method for improving the integrated navigation performance in the INS/GPS navigation system by the considering that the condition that the geometric arrangement of the satellite is degraded due to limitation of the line of sight of the satellite such as geographic feature and GPS signal jamming is proposed. A variable covariance extended Kalman filter (VCEKF) that correlated to the measured covariance to the DOP of GPS is suggested. The navigation performance of integrated navigation system using EKF and VCEKF is analyzed by Monte-Carlo simulations. The result is verified that VCEKF has better estimation performance than EKF using fixed covariance on condition that DOP value is larger than the smaller value.

Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon (도심지역에서의 연도별 다중위성항법 통합성능 예측)

  • Seok, Hyo Jeong;Park, Byung Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • In the paper, we predict the number of multi-GNSS satellites and visible satellites with the navigation satellite launch plans and their nominal orbit parameters. Based on the methodology, the multi-GNSS navigation performance and DOP (Dilution of Precision) variation from 2015 to 2020 were forecasted by the Matlab simulation. To calculate the position using the multi-GNSS constellation, we determined the time-offset between the two different systems. Two different algorithms were considered for the sake of time-offset determination; that of each was applied to system level and user side. Also, the results from two algorithms were compared for evaluating each performance. For the reality, we applied the 3D map information to the simulation, which is expected to contribute for predicting the future navigation performance in urban canyon.

Lever Arm Error Compensation of GPS/INS Integrated Navigation by Velocity Measurements (속도 측정치를 활용한 GPS/INS 통합 항법의 Lever arm 오차 보상)

  • Park, Je Doo;Kim, Minwoo;Kim, Hee Sung;Lee, Je Young;Lee, Hyung Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.481-487
    • /
    • 2013
  • In GPS(Global Positioning System)/INS(Inertial Navigation System) integrated navigation systems, GPS antennas and an inertial measurement units are usually installed outside and inside of the vehicle, respectively. By the difference of installed locations, performance of GPS/INS integrated navigation systems is affected by lever arm errors. For more accurate navigation, lever arm errors need to be compensated correctly since it directly affects the accuracy of navigation states. This paper proposes an effective lever arm error compensation method that utilizes velocity measurements of GPS and INS. By an experiment, feasibility of the proposed algorithm is verified. It is also shown that lever arm compensation is especially important when vehicles are experiencing rotational movements.