• Title/Summary/Keyword: 통합의료정보시스템

Search Result 229, Processing Time 0.031 seconds

Generation of Decision Rules Bsed on Concept Ascension and Optimal Reduction of Attributes (개념 상승과 속성의 최적 감축에 의한 결정 규칙의 생성)

  • 정환묵
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.367-374
    • /
    • 1999
  • This paper suggests an integrated method based on concept ascension and attribute reduction for efficient induction of decision rules from a large database. We study an automatic scheme to generate concept trees by a clustering technique, a method for generalizing databases by the concept ascension technique, an optimal reduction method by means of attributes reduction using the sibmificance of attributes, and an efficient way of reduction of attribute values applying the discernible matrix and functions. The method can be used for the decision making tasks such as an investment planning or price evaluation, the construction of knowledge bases for diagnosis of defects or medical diagnosis, data analysis such as marketing or experimental data, information retrieval for high level inquiries, and so on.

  • PDF

Mobile Remote Healthcare in Ubiquitous Computing Environments (유비쿼터스 환경에서 모바일을 이용한 원격 헬스케어)

  • Kang, Eun-Young;Im, Yong-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.55-61
    • /
    • 2008
  • In this paper, we proposed a multi-agent based healthcare system (MAHS) which is the combination of medical sensor module and wireless communication technology. This MAHS provides wide services to mobile telemedicine, patient monitoring, emergency management, doctor's diagnosis and prescription, patients and doctors, information exchange between hospital workers in a long distance. Also, MAHS is connected to Body Area Network (BAN) and a doctor and hospital workers. In addition, we designed and implemented extended JADE based MAHS that reduces hospital server's burden. Agents gather, integrate, and deliver the collected patient's information from sensor, and provide presentation in healthcare environment. Proposed MAHS has advantage that can handle urgent situation in the far away area from hospital like Islands through PDA and mobile device. In addition, by monitoring condition of patient (old man) in a real time base, it shortens time and expense and supports medical service efficiently.

  • PDF

Design and Implementation of an OSGi-based Old Age Patient Care System in Embedded Programming on RFIDs and Infrared Sensors (RFID와 적외선 센서의 임베디드 프로그래밍을 통한 OSGi 기반 노령 환자 케어 시스템의 설계 및 구현)

  • Cha, Si-Ho;Kim, Dae-Young;Choi, Jae-Ho;Lee, Jong-Eon;Kim, Kyu-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.1005-1012
    • /
    • 2008
  • According to an aging population has dramatically increased in over the world, silver care becomes more important than other field. In this paper, we design and implement an old age patient care system that allows a carer to instantly monitor the status of proteges and notifies emergency of a patient to a medical institute. The system uses RFIDs and infrared sensors implemented in embedded software to analyze the activity and movement detection of the elderly. And the home gateway allows easy integration with heterogeneous devices by employing OSGi that is a middleware standard for home gateways. We can verify the information on the activity per day and the activity per week by Web browsers and view realtime video on the elderly by Web Cam using the implemented system. The system also can send us cell phone messages and E-mail in case of emergency.

Case Analysis for Introduction of Machine Learning Technology to the Mining Industry (머신러닝 기술의 광업 분야 도입을 위한 활용사례 분석)

  • Lee, Chaeyoung;Kim, Sung-Min;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study investigated use cases of machine learning technology in domestic medical, manufacturing, finance, automobile, urban sectors and those in overseas mining industry. Through a literature survey, it was found that the machine learning technology has been widely utilized for developing medical image information system, real-time monitoring and fault diagnosis system, security level of information system, autonomous vehicle and integrated city management system. Until now, the use cases have not found in the domestic mining industry, however, several overseas projects have found that introduce the machine learning technology to the mining industry for improving the productivity and safety of mineral exploration or mine development. In the future, the introduction of the machine learning technology to the mining industry is expected to spread gradually.

An Information System Building to Improve the Food and Nutrition Services in Hospitals (병원 급식 및 영양 서비스를 개선하기 위한 정보시스템 구축)

  • 이재선;신해웅;김성태
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Under the quickly changing health care environment in our society competitions among hospitals are getting harder and accordingly the hospital authorities do their best efforts to renovate their hospital management and let directors of food and nutrition services in hospital be seeking the drastic changes in their clinic-support operations. To attain this end it is essential to build an information system in food and nutrition services in hospital for practicing those operational changes efficiently. By building an information system we can totally manage a number of information about hospital food and nutrition services. This kind of information system can not only relieve dieticians and food-service workers from their repetitively routine jobs, but also connect with hospital management information systems organically. Resultantly productivity in this service area can be improved and the efficiency of hospital management will be increased. And accordingly the competitive advantage of the hospital can be greater than ever and that brings patients' and hospital employees' satisfaction. I would like to name this kind of information system for hospital food and nutrition services "TASTY", abbreviated from "Time-based Advanced Service Technology for Yong-Dong Severance Hospital, Nutrition Department" There are one basic information management area and five business management areas in TASTY. Five specific business areas are divided by menu, procurement, clinical nutrition service, production(including distribution and meal service), and financial management.inancial management.

  • PDF

Standardization and Management of Interface Terminology regarding Chief Complaints, Diagnoses and Procedures for Electronic Medical Records: Experiences of a Four-hospital Consortium (전자의무기록 표준화 용어 관리 프로세스 정립)

  • Kang, Jae-Eun;Kim, Kidong;Lee, Young-Ae;Yoo, Sooyoung;Lee, Ho Young;Hong, Kyung Lan;Hwang, Woo Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.679-687
    • /
    • 2021
  • The purpose of the present study was to document the standardization and management process of interface terminology regarding the chief complaints, diagnoses, and procedures, including surgery in a four-hospital consortium. The process was proposed, discussed, modified, and finalized in 2016 by the Terminology Standardization Committee (TSC), consisting of personnel from four hospitals. A request regarding interface terminology was classified into one of four categories: 1) registration of a new term, 2) revision, 3) deleting an old term and registering a new term, and 4) deletion. A request was processed in the following order: 1) collecting testimonies from related departments and 2) voting by the TSC. At least five out of the seven possible members of the voting pool need to approve of it. Mapping to the reference terminology was performed by three independent medical information managers. All processes were performed online, and the voting and mapping results were collected automatically. This process made the decision-making process clear and fast. In addition, this made users receptive to the decision of the TSC. In the 16 months after the process was adopted, there were 126 new terms registered, 131 revisions, 40 deletions of an old term and the registration of a new term, and 1235 deletions.

A Implementation of Smart Band and Data Monitoring System available of Measuring Skin Moisture and UV based on ICT (ICT기반의 피부 수분 및 자외선 측정이 가능한 스마트 밴드 및 데이터 모니터링 시스템 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo;You, Kang-Soo;So, Won-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.715-724
    • /
    • 2017
  • Today all kinds of smart devices are being developed with various researches on wearable devices that support smart computing on the human body. Skin diseases continue to rise including freckles, pimples, atopy, and scalp trouble due to the environmental and genetic factors, and people pay bigger medical bills to treat their skin diseases. There is thus a need to develop a smart-phone or table-based smart healthcare imaging system of high portability and diagnostic accuracy capable of analyzing and managing various skin problems related to skin care. This study proposed an integrated system combining the Smart Mi Band, a wearable device using moisture and UV sensors based on IoT, on the hardware part with the sensor information monitoring software.

Device Adapter Model based on Dynamic Management Module for u-Health gateway (u-헬스 게이트웨이를 위한 동적 관리 모듈 기반의 디바이스 어댑터 모델)

  • Kim, Jong-Tak;Song, Si-Yun;Hwang, Hee-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.41-48
    • /
    • 2010
  • It is essential to guarantee a smooth communication and data exchange in a PHD(Personal Healthcare Device) network for applications providing U-health services. In spite of that, most of PHDs are heterogeneous, so the heterogeneity of their protocols makes it difficult to develop an integrated gateway sending sensed healthcare data to U-health service providers. To solve this problem, we suggest the design and implementation of a device adapter model based on dynamic managed module in this paper. Our model were implemented to work on the OSGi-based gateway middleware and to have interoperability in connection with the HL7 system that is the standard of the Healthcare Information systems. In addition, our model has an architecture supporting a communication based on the object serialization in order to provide extensibility in the functional aspect of applications. Through the experiment on a test-bed which is an implementation of the device adapter module for electrocardiogram and blood-pressure/blood-sugar device having one channel, we have confirmed the accuracy of sensing and sending data.

A Reservation based Network Resource Provisioning Testbed Using the Integrated Resource Management System (통합자원관리시스템을 이용한 예약 기반의 네트워크 자원 할당 테스트베드 망)

  • Lim, Huhn-Kuk;Moon, Jeong-Hoon;Kong, Jong-Uk;Han, Jang-Soo;Cha, Young-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1450-1458
    • /
    • 2011
  • The HPcN (Hybrid & high Performance Convergence Network) in research networks means environment which can provide both computing resource such as supercomputer, cluster and network resource to application researchers in the field of medical, bio, aerospace and e-science. The most representative research network in Korea, KREONET has been developing following technologies through the HERO (Hybrid Networking project for research oriented infrastructure) from 200S. First, we have constructed and deployed a control plane technology which can provide a connection oriented network dynamically. Second, the integrated resource management system technology has been developing for reservation and allocation of both computing and network resources, whenever users want to utilize them. In this paper, a testbed network is presented, which is possible to reserve and allocate network resource using the integrated resource management system. We reserve network resource through GNSI (Grid Network Service Interface) messages between GRS (Global Resource Scheduler) and NRM (Network Resource Manager) and allocate network resource through GUNI (Grid User Network Interface) messages between the NRM (network resource manager) and routers, based on reservation information provided from a user on the web portal. It is confirmed that GUNI interface messages are delivered from the NRM to each router at the starting of reservation time and traffic is transmitted through LSP allocated by the NRM.

Implementation of a Remote Patient Monitoring System using Mobile Phones (모바일 폰을 이용한 원격 환자 관리 시스템의 구현)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1167-1174
    • /
    • 2009
  • In the monitoring of a patient in a sickroom, not only the physiologic and environmental data of the patient, which is automatically measured, but also the clinical data(clinical chart)of the patient, which is drew up by a doctor or nurse, are recognized as important data. However, since in the current environment of a sickroom, clinical data is collected being divided from the data that is automatically measured, the two data are used without an effective integration. This is because the integration of the two data is difficult due to their different collection times, which leads the reconstruction of clinical data to be remarkably uncertain. In order to solve these problems, a method to synchronize the continuous environmental data of a sickroom and clinical data is appearing as an important measure. In addition, the increase of use of small machines and the development of solutions based on wireless communications provide a communication platform to the developers of health care. Thus, this paper realizes a remote system for taking care of patients based on a web that uses mobile phones. That is, clinical data made by a nurse or doctor and the environmental data of a sick room comes to be collected by a collection module through a wireless sensor network. An observer can see clinical data and the environmental data of a sickroom through his/her mobile phone, integrating and storing his/her data into the database. Families of a patient can see clinical data made by hospital and the environment of the sick room of the patent through their computers or mobile phones outside the hospital. Through the system,hospital can provide better medical services to patients and their families.