• Title/Summary/Keyword: 통합비행 시뮬레이션

Search Result 48, Processing Time 0.019 seconds

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Development of Modular Simulation Environment to Design the Flight Scenario and Analyze the Guidance and Control Performance of Guided Weapon (유도무기의 비행 시나리오 설계 및 유도조종 성능분석을 위한 모듈화 기반 시뮬레이션 환경 개발)

  • Hyesung, Kim;YuYoung, An;ChangSun, Lee;HyoungJin, Na
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • This paper describes the development of a modular simulation environment to analyze the performance of guided weapons. For the reusability of the simulation environment, components of the guided weapon simulation are modularized based on MATLAB Simulink. And the module management system is implemented based on Excel and MATLAB GUI for simulation interface and module management. In addition, a method of integration for modules with different interface and a method to set up the guidance and control phase for designing a guided flight scenario are suggested. Finally, to verify the performance of the implemented simulation environment, it was compared with the existing simulation results.

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

Simulation System Design for Integrated Operation of Manned/Unmanned Aerial Vehicles (유무인기 통합 운용 시뮬레이션 시스템 설계 방안)

  • O, Eun-Mi;Kim, Hyeon-Gyeong;Eun, Yeon-Ju;Jeon, Dae-Geun
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.228-232
    • /
    • 2016
  • 유/무인기가 통합되어 운용되는 환경을 고려한 시뮬레이션 시스템 설계 방안을 제시하였다. 기존의 관제 공역 내의 유인기를 대상으로 하는 항공 교통 시뮬레이션 시스템의 기능과 무인기 시스템의 기본적인 기능을 고려하였으며, 이를 기반으로 유/무인기 복합 운용의 새로운 개념을 적용하여 모의할 수 있는 시뮬레이션 환경을 구성하였다. 모의 환경의 확장성을 고려하여, 무인기는 관제 공역에 진입하여 유인기와 복합 운용되는 무인항공기 시스템과 비관제 영역에서 운용되는 소형 무인비행장치로 구분하여 구성하였다. 시뮬레이션 시스템을 구현하기 위한 운용 개념에 대해 서술하였으며, 이를 기반으로 필요로 하는 주요 기능 요소들을 구성하고 각 요소에서 고려되어야 하는 주요 요구 사항을 제시하였다.

  • PDF

The Development of The Simulation Environment for Operating a Simultaneous Man/Unmanned Aerial Vehicle Teaming (유/무인 항공기 복합운용체계 검증을 위한 시뮬레이션 환경 구축)

  • Gang, Byeong Gyu;Park, Minsu;Choi, Eunju
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.36-42
    • /
    • 2019
  • This research illustrates how the simulation environment for operating the simultaneous man/unmanned aerial vehicle teaming is constructed. X-Plane program, HILS for the ducted fan aircraft (unmanned) and CTLS (manned aircraft) with communication devices are interfaced to simulate the basic co-operational flight. The X-plane and HILS can allow operators to experience the maned and unmanned aircraft operation in the airspace on the ground in turn they can perform various simulated missions in advance before the actual flight. For the test purpose, the data link between man/unmanned aircraft and ground control station is examined using C Band and UHF radio channels by the manned aircraft.

A Study on Aircraft Flight Stability of T-50 Air Data Reconfiguration Mode (T-50 형상 재구성 모드의 항공기 비행 안정성에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moom;Hwang, Min-Hwan;Bae, Myung-Whan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.57-64
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft using digital flight-by-wire flight control system receive aircraft flight condition such as altitude, airspeed and AoA(angle of attack) from IMFP(Integrated Multi-Function Probe). IMFP sensors data have triplex structure using three IMFP sensors. An air data reconfiguration mode is applied to a T-50 flight control law to guarantee the aircraft flight stability when 2 or 3 IMFP sensors data are invalided. In this study, linear analysis and HQS(Handling Quality Simulator) pilot simulation are performed to analyze flight stability when the air data reconfiguration mode is applied to the control law. And we propose an example that the air data reconfiguration mode is applied to the control law due to second failure of IMFP during T-50 flight. It is found that the aircraft flight stability is not affected when the T-50 flight control law is changed to the air data reconfiguration mode.

Study on the Integrated UAV Simulation Environment for the Evaluation of the Midair Collision Alarm System (공중충돌경보시스템 평가를 위한 통합 무인기 시뮬레이션환경 연구)

  • Mun, Seong-yeop;Kim, Ju-young;Lee, Dong-woo;Baek, Gyeong Min;Kim, Jin Sil;Na, Jongwhoa
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.288-298
    • /
    • 2015
  • For the commercialization of unmanned aircraft, we must validate the safety of the air/ground collision alert systems (CAS). The validation procedure of CAS requires the flight test which is not only expensive but also dangerous. To alleviate this problem, we need the simulation based validation process for the CAS. We developed an integrated UAV simulation (IUS) environment which interconnect the flight simulator, the Matlab/Simulink, and a target avionics simulation model. We developed the collision warning module of the TCAS and tested using IUS and flight encounter models. Using IUS, we can evaluate the performance and reliability of a target avionic system at the preliminary design stage of a development life cycle.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.

Modeling and Simulation of Target Existence Probability in Tactical Guidance Missile Seeker Image (영상탐색기 적용 전술유도무기 영상 내 표적존재확률 분석을 위한 M&S 설계 및 분석)

  • Seol, SangHwan
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.43-49
    • /
    • 2015
  • Maximum lock-on distance in tactical guidance missile using seeker image is estimated by seeker's FOV, resolution and performance of tracking algorithm. In case, a missile is launched beyond the maximum lock-on distance, the missile is guided by INS pure navigation until it enters the lock-on possible zone. However, the probability of a target's existence within seekers images decreases as flight time goes by. Therefore, it is crucial to determine the distance that satisfies a certain target existence probability (TEP) and the maximum lock-on distance in order for an operator to take over the navigation role between two distances. In this paper, simulation which can analyse TEP in tactical guided missile seeker image is designed.