The objective of the In-h(High Level Architecture) have recommended by DoD(Department of Defense) is to facilitate interoperability among simulations and to promote reuse of their components. There are many legacy simulation softwares developed before the HLA becomes simulation standard. The integration of legacy simulations into federations using the HLA is an important research topic in M&S(Modeling and Simulation) area. Legacy simulation softwares of the mission critical industry such as nuclear and aerospace are generally use Fortran language. However, the reuse of those is not easy because the HLA is not support Fortran language. This paper suggests a integration method which minimizes the modification of legacy simulation software and migrates the legacy simulation software to HLA federation. Each federate participating in federation have the separated executables that communicate via a shared memory created at run-time. Two types of shared memory blocks are used for publication and subscription. Declaration block for global variables used in legacy simulation software is separated for publication and subscription and then mapped as classes of objects and interactions for the HLA FOM design. To validate the suggested method, we approached the HLA integration of legacy nuclear simulation code being used in plant design and to observe the integration results, we used the FMT(Federation Management Tool). The diagnostic information which the FTM displays showed that our method can be successfully and effectively used for a HLA federation.
Park Jae-Kwan;An Kyung-Hwan;Jung Ji-Won;Hong Bong-Hee
Journal of KIISE:Databases
/
v.33
no.3
/
pp.271-281
/
2006
Recently the need for Location-Based Service (LBS) has increased due to the development and widespread use of the mobile devices (e.g., PDAs, cellular phones, labtop computers, GPS, and RFID etc). The core technology of LBS is a moving-objects database that stores and manages the positions of moving objects. To search for information quickly, the database needs to contain an index that supports both real-time position tracking and management of large numbers of updates. As a result, the index requires a structure operating in the main memory for real-time processing and requires a technique to migrate part of the index from the main memory to disk storage (or from disk storage to the main memory) to manage large volumes of data. To satisfy these requirements, this paper suggests a unified index scheme unifying the main memory and the disk as well as migration policies for migrating part of the index from the memory to the disk during a restriction in memory space. Migration policy determines a group of nodes, called the migration subtree, and migrates the group as a unit to reduce disk I/O. This method takes advantage of bulk operations and dynamic clustering. The unified index is created by applying various migration policies. This paper measures and compares the performance of the migration policies using experimental evaluation.
In recent years, the cost of automotive ECU (Electronic Control Unit) has accounted for more than 30% of total car production cost. However, the complexity of testing and debugging an automotive ECU is increasing because automobile manufacturers outsource automotive ECU production. Therefore, a large amount of cost and time are spent to localize faults during testing an automotive ECU. In order to solve these problems, we propose a fault localization method in memory for developers who run the integration testing of automotive ECU. In this method, memory is partitioned by utilizing memory map, and fault-suspiciousness for each partition is calculated by utilizing memory update information. Then, the fault-suspicious region for partitions is decided based on calculated fault-suspiciousness. The preliminary result indicated that the proposed method reduced the fault-suspicious region to 15.01(%) of memory size.
Recently, many embedded devices that have the computing capability required for deep learning have become available; hence, many new applications using these devices are emerging. However, these embedded devices have an architecture different from that of PCs and high-performance servers. In this paper, we propose a method that improves the performance of deep-learning framework by considering the architecture of an embedded device that shares memory between the CPU and the GPU. The proposed method is implemented in Caffe, an open-source deep-learning framework, and is evaluated on an NVIDIA Jetson TK1 embedded device. In the experiment, we investigate the image recognition performance of several state-of-the-art deep-learning networks, including AlexNet, VGGNet, and GoogLeNet. Our results show that the proposed method can achieve significant performance gain. For instance, in AlexNet, we could reduce image recognition latency by about 33% and energy consumption by about 50%.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.555-558
/
2011
하드웨어의 발전으로 인하여 한 머신에 장착되는 물리 메모리의 크기가 점차로 커지고 있으며, 가상화 기술과 같은 서버 통합 워크로드가 일반화됨에 따라 개별 응용프로그램의 working set size 또한 증가하고 있다. 하지만 가상주소에 대한 물리주소 변환의 cache인 TLB(Translation Look-aside Buffer)의 커버리지는 물리 메모리 크기가 커짐에 따라 점차 줄어들어 TLB miss가 발생하여 메모리 접근이 느려질 가능성이 더욱 높아지고 있다. 본 논문에서는 계층적 비트맵을 사용하는 TLB 표현 방법을 이용하여 TLB 커버리지를 높이는 하드웨어적인 기법을 제안하고, 이에 적합한 운영체제 기법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.62-63
/
2016
딥러닝의 대표적 개발 환경 중 하나인 Caffe를 임베디드 시스템의 메모리 구조를 고려하여 최적화하고 실제 측정 실험으로 기존의 방식보다 처리시간과 소비 전력량의 이득이 있다는 것을 확인하였다. 구체적으로 통합 메모리를 사용하는 임베디드 시스템 환경의 특성에 적합한 zero-copy기법을 적용하여 CPU와 GPU 모두 접근이 가능하도록 메모리 영역을 맵핑하는 방식으로 메모리 복제에 따른 오버헤드를 줄였으며, GoogLeNet 네트워크 모델에 대하여 10%의 처리 속도 향상과, 36% 소비 전력 감소를 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1670-1673
/
2010
서버 기반 컴퓨팅(Server Based Computing)은 데이터와 작업 처리가 서버에서 이루어지기 때문에 데이터를 효과적으로 통합하고 관리를 할 수 있다. 본 논문에서는 서버 기반 컴퓨팅을 이용하여 사용자에게 본인만의 데스크톱 환경을 제공하고, 언제 어디서나 필요한 정보와 애플리케이션을 실행할 수 있는 방법을 제안한다. 이러한 환경 하에서 최대한 서버의 활용률을 높이고 낭비하는 자원을 줄이기 위해 서버 가상화 기법(Server Virtualization)과 가상 OS 메모리 할당 알고리즘을 도입하였다. 서버와 사용자의 수에 따른 메모리 할당 방식을 hard handoff 라고 명하고, 사용자에게 메모리를 적절히 할당할 수 있도록 하였다. 또한 기존 사용자에 대한 메모리 재할당의 경우, Immutable OS와 별도의 사용자 데이터 공간으로 나누어 관리하여 가상 OS의 재접속 시간을 단축시킬 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.747-749
/
1998
본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬 계산 모델을 제안한다. 음소모델은 continuous HMM에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 knowledge-based approach를 사용한다. 또한 계층구조의 지식베이스상에서 다수의 가설을 처리하기 위해 memory-based parsing기술을 사용하였다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험을 통하여 음성인식 과정에서 발생하는 speech-specific problem의 해를 제공하고 음성인식 시스템의 병렬화를 통하여 실시간 음성인식의 가능성을 보여준다.
본 논문에서는 터보 디코더에 사용되는 MAP 알고리즘의 저전력 구조를 제안한다. 터보 디코더 알고리즘 중 하나인 MAP 알고리즘은 많은 메모리 사이즈와 복잡한 연산량을 가진다. 본 논문에서는 메모리 사이즈를 줄이기 위하여 두 번의 상태 천이(branch metric) 과정을 하나로 통합 계산하는 방식을 제안하였다. 제안된 방식으로 구한 상태 천이 값을 이용해서 FSM(Forward State Metric)값을 구하면 BM(branch metric)값이 다음 상태의 FSM에 포함되어지므로 APP(A Posteriori Probability)를 계산할 때 BM부분이 빠져 LLR(Log Likelihood Ratio)의 연산량을 줄일 수 있다. 실험결과 기존의 MAP 알고리즘과 동일 성능을 가지면서 MAP 알고리즘을 개선한 Pietrobon 알고리즘을 log-MAP 알고리즘에 적용하여 LLR 연산량을 비교했을 때 덧셈 연산을 반으로 줄일 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.112-114
/
2004
무선 통신 기술의 발달로 인하여 LBS(Location Based System)와 같은 새로운 이동체 관련 서비스가 생겨나고 있다. 위치 기반 서비스에서 클라이언트인 이동체들이 주기적으로 보고하는 위치 데이터를 실시간으로 처리하기 위해 서버에서는 메인 메모리 DBMS를 유지하는 것이 필요한데, 데이터의 양이 계속적으로 증가하는 특성으로 인해 메인 메모리의 공간이 부족할 때 데이터를 디스크로 옮기는 시스템 설계가 필요하다. 그러나 기존의 연구는 대용량 이동체 환경에서의 색인 이주를 위한 노드 선택 정책과 이주를 위해 선택된 노드들의 디스크 배치 정책을 통합하여 나타내지 못하였다. 그러므로 대용량 이동체 데이터베이스 시스템 환경에 적합한 이주 정책들에 대한 연구가 필요하다. 이 논문에서는 대용량 이동체 데이터베이스 환경을 고려한 노드 선택 정책과 디스크 배치 정책을 분류하고 새로운 이주 정 책을 제시한다. 노드 선택 정책으로는 질의 성능을 위해서 캐쉬의 LRU(Least Recently Used) 정책을 이용한 변형된 LRU정책을 제시하고, 삽입 우선 정책으로는 이동체 색인인 R-tree의 삽입 알고리즘을 역이용한 정책을 제시한다. 또한 이주되는 노드들에 대한 디스크 페이지 배치가 시스템의 질의 성능에 영향을 미치므로 이를 고려한 디스크 배치 정책을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.